
ON THE STRENGTH OF WEAK COMPACTNESS

ALEXANDER P. KREUZER

Abstract. We study the logical and computational strength of weak com-
pactness in the separable Hilbert space `2.

Let weak-BW be the statement the every bounded sequence in `2 has a weak
cluster point. It is known that weak-BW is equivalent to ACA0 over RCA0 and
thus that it is equivalent to (nested uses of) the usual Bolzano-Weierstraß
principle BW.

We show that weak-BW is instance-wise equivalent to Π0
2-CA. This means

that for each Π0
2 sentence A(n) there is a sequence (xi)i∈N in `2, such that one

can define the comprehension function for A(n) recursively in a cluster point
of (xi)i. As a consequence we obtain that the degrees d ≥T 0′′ are exactly
the degrees that contain a weak cluster point of any computable, bounded
sequence in `2. Since a cluster point of any sequence in the unit interval [0, 1]
can be computed in a degree low over 0′ (see [Kre11]), this also shows that
instances of weak-BW are strictly stronger than instances of BW.

We also comment on the strength of weak-BW in the context of abstract
Hilbert spaces in the sense of Kohlenbach and show that his construction of
a solution for the functional interpretation of weak compactness is optimal,
cf. [Koh].

We investigate the computational and logical strength of weak sequential com-
pactness in the separable Hilbert space `2.

The strength of weak compactness has so far only been studied in the context
of proof mining where general Hilbert spaces in a more general logical system are
considered, see [Koh10, Koh]. It is straightforward to deduce from this analysis
that weak compactness for `2 is equivalent to ACA0 over RCA0.

In this paper we refine this result and show that weak compactness on `2 is
instance-wise equivalent to Π0

2-CA over RCA0. This means that for each bounded
sequence in `2 one can uniformly compute a function f such that from a compre-
hension function for ∀x∃y f(x, y, n) = 0 one can compute a weak cluster point of
the sequence and vice versa.

As a consequence we obtain that the degrees d ≥T 0′′ are exactly the degrees
that compute a weak cluster point for each computable bounded sequence in `2
and that there is a computable bounded sequence in `2 such that from any cluster
point of this sequence one can compute 0′′.
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In [Kre11] we showed that instances of the Bolzano-Weierstraß principle for the
unit interval [0, 1] are equivalent to instances Σ0

1-WKL, i.e. WKL for 0/1-trees given
by a Σ0

1-predicate. Thus instances of the Bolzano-Weierstraß principle for weak
compactness are strictly stronger than instances of the usual Bolzano-Weierstraß
principle.

This paper is organized as follows: first the Hilbert space `2 is defined. This
definition follows [Sim09, AS06]. Then the actual results are proven (Theorems 9
and 13) and we show that the result can also be formulated for abstract Hilbert
spaces, in the sense of Kohlenbach [Koh08] (Theorem 11). As a corollary of this we
obtain that Kohlenbach’s analysis of the weak compactness functional Ω∗ in [Koh]
is optimal (Corollary 12). At the end, we reformulate our result in terms of the
Weihrauch lattice (Remark 15).

Definition 1 (vector space, [Sim09, II.10]). A countable vector space A over a
countable field K consists of a set |A| ⊆ N with operations +: |A| × |A| → |A|
and · : |K| × |A| → |A| and a distinguished element 0 ∈ |A| such that (|A|,+, ·, 0)
satisfies the usual axioms for a vector space over K.
Definition 2 (Hilbert space, [AS06, Definition 9.3]). A (real) separable Hilbert
space H consists of a countable vector space A over Q together with a function
〈·|·〉 : A×A→ R satisfying

(1) 〈x|x〉 ≥ 0,
(2) 〈x|y〉 = 〈y|x〉,
(3) 〈ax+ by|z〉 = a〈x|z〉+ b〈y|z〉,

for all x, y, z ∈ A and a, b ∈ Q.
The inner product 〈·|·〉 on H induces a pseudonorm ‖x‖ :=

√
〈x|x〉. We think

of the Hilbert space H as the completion of A under the pseudometric d(x, y) =
‖x − y‖. Thus an element of H consists of a sequence (xn)n∈N ⊆ A, such that
d(xn, xm) < 2−n for all m > n. The inner product and the pseudonorm are
continuously extended to the whole space H.

A Hilbert space is finite dimensional if it is spanned by finitely many vectors. If
this is not the case we say that it is infinite dimensional.

Avigad, Simic showed in [AS06, Theorem 10.9] that RCA0 proves that every
Hilbert space H in the sense of Definition 2 has an orthonormal basis. Since each
such Hilbert space is separable this basis is at most countable.

As consequence of this each two infinite dimensional (separable) Hilbert spaces
are isomorphic over RCA0, see [AS06, Corollary 10.11]. Thus we many restrict our
attention to `2, as given by the following definition.
Definition 3 (`2, [Sim09, II.10.2]). Let A = (|A|,+, ·, 0) be the following vec-
tor space over Q, where |A| is the set of all finite sequences of rational numbers
〈r0, . . . , rm〉, such that either m = 0 or rm 6= 0. Addition is defined by putting
〈r0, . . . , rm〉+ 〈s0, . . . , sn〉 = 〈r0 + s0, . . . , rk + sk〉 where ri = 0, sj = 0 for i > m,
j > n and k = max{i | i = 0 ∨ ri + si 6= 0}. For scalar multiplication put
q · 〈r0, . . . , rm〉 = 〈0〉 if q = 0 and 〈q · r0, . . . , q · rm〉 otherwise.

The space `2 is defined to be the Hilbert space consisting of A with the inner
product 〈

〈r0, . . . , rm〉
∣∣〈s0, . . . , sn〉

〉
=

max(n,m)∑
i=0

risi.
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The canonical orthonormal basis (en)n of `2 is given by
en = 〈0, . . . , 0︸ ︷︷ ︸

n times

, 1〉.

Definition 4 (bounded linear operator, [AS06, Definition 9.4]). A bounded linear
operator from a Hilbert space H = (A, 〈·|·〉) to a Hilbert space H ′ = (A′, 〈·|·〉) is a
function F : |A| → A′, such that

• F is linear, i.e. F (q1x1 + q2x2) = q1F (x1) + q2F (x2) for all q1, q2 ∈ Q and
x1, x2 ∈ |A| and
• the norm of F is bounded, i.e. there exists an m ∈ R with ‖F (x)‖ ≤ m‖x‖
for all x ∈ |A|.

Then, F is continuously extended to the whole space A.
Definition 5 (projection). Let M be a closed linear subspace of a Hilbert space
H. A point y ∈M is called the projection of x ∈ H if x− y is orthogonal to (each
element of) M , i.e. ∀z ∈M 〈z|x− y〉 = 0.

A bounded linear operator PM on H that maps each point of H to its projection
on M is called the projection function for M .

Usually projections are defined differently, see e.g. [AS06, Definition 12.1]. Avi-
gad, Simic showed that this definition is equivalent over RCA0 to the usual defini-
tion, see [AS06, Lemma 12.2].

We immediately obtain the following lemma:
Lemma 6. Let N ⊂ N andM be the subspace of `2 that is spanned by {en | n ∈ N}.
Then RCA0 proves that the projection PM of `2 onto the space M exists.
Proof. The projection of an element 〈r0, . . . , rm〉 of the space |A| is given by the
vector 〈r′0, . . . , r′m′〉, where r′i = ri if n ∈ N and r′i = 0 if n /∈ N and m′ = max{i ≤
m | r′i 6= 0 ∨ i = 0}.

It is easy to show that PM is linear and that it is bounded by 1. Thus it defines
a bounded linear operator in the sense of Definition 4. �

Definition 7 (weak convergence). We say that a sequence (xi)i∈N of elements of
a Hilbert space H converges weakly to a point x if
(1) ∀y ∈ H lim

i→∞
〈y|xi〉 = 〈y|x〉.

The Bolzano-Weierstraß principle for weak convergence is defined to be the state-
ment that for every bounded sequence (xi)i∈N of elements of H there exists a point
x such that a subsequence of (xi)i converges weakly to x. This principle is abbre-
viated by weak-BW. The restriction of this principle to a fixed sequence (xi)i∈N is
denoted by weak-BW((xi)i). If H has an orthonormal basis it is sufficient to have
(1) only for all y in the basis.
Lemma 8. The system RCA0 proves that projections are weakly continuous in the
sense that if x is the weak limit of a sequence (xi)i∈N, then Px is the weak limit of
(Pxi)i∈N for any projection P .
Proof. Follows from the definition of the projection and the continuity of 〈·|·〉. �

We will denote by Π0
2-CA(h) the instance of Π0

2-comprehension given by the
formula A(n) ≡ ∀x∃y h(x, y, n) = 0, i.e. the statement

∃g ∀n (g(n) = 0↔ ∀x∃y h(x, y, n) = 0) .
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Theorem 9. Each instance of Π0
2-CA given by the formula ∀x∃y h(x, y, n) = 0 is

uniformly implied by an instance of weak-BW. More precisely, there exists a type 2
program F , such that

RCA0 ` ∀h
(
weak-BW(F (h))→Π0

2-CA(h)
)
.

(In RCA0 the program F (h) can be formulated as an oracle Turing machine {e}h

for a suitable e ∈ N.)

Proof. Fix an h and define

f(n, i) := max{x ≤ i | ∀x′ < x∃y < i (h(x′, y, n) = 0)}.

It is clear that λi.f(n, i) is increasing for each n.
Claim 1.

A(n) iff λi.f(n, i) is unbounded, i.e. ∀k ∃i (f(n, i) > k).

Proof of Claim 1.
• The right to left direction follows immediately from the definition of f .
• For the left to right direction fix an n. We will show that the negation of
the right side implies the negation of the left side.

Hence assume that λi.f(n, i) is bounded by k, i.e.

(2) ∀i (f(n, i) ≤ k).

By Σ0
1-induction we may assume that k is minimal and thus

∃i (f(n, i) = k).

From the definition of f we obtain

∀x < k ∃y (h(x, y, n) = 0).

Together with (2) we obtain that

∀y (h(k, y, n) 6= 0)

and hence ¬A(n).
This proves the claim.

Let
yn,i := e〈n,f(n,i)〉.

The sequence (yn,i)i∈N is obviously bounded by 1 and hence possesses for each n a
weak cluster point yn.
Claim 2.

• ‖yn‖ =R 0, if A(n) and
• ‖yn‖ =R 1, if ¬A(n).

Proof of Claim 2.
• If A(n) is true, then λi.f(n, i) is unbounded and hence 〈ej |yn,i〉 becomes 0
as i increases. Therefore yn,i converges weakly to 0.
• If A(n) is false, then λi.f(n, i) is bounded. By Σ0

1-induction we obtain a
smallest upper bound k and since λi.f(n, i) is increasing we obtain that
limi→∞ f(n, i) = k. As a consequence we obtain that yn,i eventually be-
comes e〈n,k〉 and hence that yn = e〈n,k〉 and ‖yn‖ =R 1.
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This proves the claim.
We parallelize this process to obtain the comprehension function for A(n). For

this let

xi :=
i∑

n=0
2−

n+1
2 yn,i.

Since the yn,i are orthogonal for different n, we obtain by Pythagoras that

‖xi‖2 =
i∑

n=0
2−(n+1)‖yn,i‖2 ≤ 1

and thus that (xi) is bounded.
It is also clear that there exists an F such that xi = F (h, i).
By weak-BW(F (h)) there exists a weak cluster point x of (xi). Let now Mn be

the closed linear space spanned by {e〈n,k〉 | k ∈ N}. By definition the subspaces
Mn are disjoint (except for the 0 vector) for different n, and yn,i ∈Mn for all i, n.

By Lemma 6 the projections PMn onto the spaces Mn exist. For this projections
we have

PMn
(xi) = 2−

n+1
2 yn,i for n ≥ i.

Since PMn
is weakly continuous, see Lemma 8, we get

PMn
(x) = 2−

n+1
2 yn.

Now Claim 2 yields that ‖PMn(x)‖ =R 0 if A(n) and ‖PMn(x)‖ =R 2−n+1
2 if ¬A(n).

Hence the function

g(n) :=
{

0 if ‖PMn(x)‖(n+ 1) <Q 2−n+1
2 ,

1 otherwise,

where ‖PMn
(x)‖(n + 1) is a 2−(n+1) good rational approximation of ‖PMn

(x)‖,
provides a comprehension function and solves the theorem. �

As an immediate consequence we obtain the following corollary:

Corollary 10. There is a sequence (xi)i of elements in `2 such that from a cluster
point x of this sequence one can compute the second Turing jump 0′′.

Proof. Take for ∀x∃y h(x, y, n) = 0 in Theorem 9 the Π0
2 statement that the Turing

machine {n}0′(n) does not halt. �

Kohlenbach studies weak compactness in the context of arbitrary abstract Hilbert
spaces, see [Koh08, Koh10]. By abstract Hilbert space we mean that the Hilbert
space is added as a new type to the system together with the Hilbert space axioms
and that the space is not coded as sequences of numbers. In this way one can
analyze Hilbert spaces without referring to a concrete space like `2 and one does
not automatically obtain a separable Hilbert space but can analyze general Hilbert
spaces.

For this, we will work in the system P̂Aω�+QF-AC0,0. This is roughly the exten-
sion of RCA0 to finite types. (QF-AC0,0 denotes quantifier-free choice of numbers
over numbers and is equivalent to ∆0

1-CA.) The terms of P̂Aω� correspond to the
extension of Kleene’s primitive recursive functionals to mixed types and are called
T0. For a definition of P̂Aω� see for instance [Koh08, Chapter 3] and note that
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the system P̂Aω� is there called ŴE-PAω�. By Π0
1-CP we denote the Π0

1-bounded
collection principle. (In first order context Π0

1-CP is sometimes denoted by BΠ1.)
We do not introduce the notation for abstract Hilbert spaces here but refer the
reader to [Koh08, Chapter 17]. We show now that the statement of Theorem 9 is
also applicable in this context:

Theorem 11. Let P̂Aω�[X, 〈·|·〉] be the extension of P̂Aω� by the abstract Hilbert
space X with the inner product 〈·|·〉 and let weak-BWX denote the Bolzano-Weier-
straß principle for weak compactness in X.

Then there is a closed term F ∈ T0, such that

P̂Aω�[X, 〈·|·〉] + QF-AC0,0 + Π0
1-CP ` ∀h∀(ei)i∈N

(
∀i, j 〈ei|ej〉 = δij

→
(
weak-BWX(F ((ei)i, h))→Π0

2-CA(h)
))
,

where δij is a shorthand for
{

1 if i = j,
0 if i 6= j.

In other words, if X is provably infinite dimensional and (ei)i is a witness for
that, then Theorem 9 also holds with `2 replaced by X.

Proof. The only step in the proof of Theorem 9 that does not formalize in the
system P̂Aω�[X, 〈·|·〉] is projection of x onto Mn, i.e. Lemma 6, since this depends
on the coding of `2.

Let xi, yn,i be as in Theorem 9. We show now how to obtain this projection of
x in this system. For this consider

‖x‖2 = 〈x|x〉 = lim
i→∞
〈x|xi〉

= lim
i→∞

i∑
n=0

2−(n+1)〈x|yn,i〉

≤ lim
i→∞

k∑
n=0

2−(n+1)〈x|yn,i〉+ 2−k for each k

=
k∑

n=0
2−(n+1) lim

i→∞
〈x|yn,i〉+ 2−k.

Now

(3) 〈x|yn,i〉 = lim
j→∞
〈xj |yn,i〉 = 2−(n+1) lim

j→∞
〈yn,j |yn,i〉.

Thus, by the definition of yn,i the term 〈x|yn,i〉 is monotone in i and in particular
for each n there is an m, such that

lim
i→∞
〈x|yn,i〉 = 〈x|yn,i′〉 for i′ ≥ m.

By Π0
1-CP there is now an m which does it for all n ≤ k. Hence, we obtain

∀k ∃i ‖x‖2 ≤
k∑

n=0
2−(n+1)〈x|yn,i〉+ 2−k.



ON THE STRENGTH OF WEAK COMPACTNESS 7

By (3) the term 〈x|yn,i〉 is either 0 or 2−(n+1), hence

∀k ∃i ‖x‖2 ≤
k∑

n=0
〈x|yn,i〉2 + 2−k.

Thus,
∑k

n=0〈x|yn,i〉yn,i is a 2−k/2 good approximation of x consisting of finite
linear combinations of (ei). Using an application of QF-AC0,0 one easily obtains a
sequence of approximations converging to x at the rate 2−k. Using this one can
obtain PMn

(x) like in Lemma 6. �

Let Tn be the extension of T0 by iteration for type n objects. The functions
contained in Tn are exactly the functions that are provably total with Σ0

n+1-IA.
By applying the functional interpretation to Theorem 11 we obtain the following

corollary:

Corollary 12. Let Ω be a solution of the functional interpretation of weak-BWX

then for every n ≥ 1 there are terms in Tn, such that the application of Ω to these
terms is (extensionally) equal to a function definable in the Tn+2 but not in Tn+1.

Proof. Let A be the statement that the function fωn+1 from the fast growing hier-
archy is total. It is well known that the statement A cannot be proven in Σ0

n+2-IA
but can be proven using a suitable instance of Σ0

n+3-IA, see [HP98, II.3.(d)]. Thus
a solution of the functional interpretation of A cannot be found in Tn+1 but can be
found in Tn+2.

Let P̂Aω�[X, 〈·|·〉, (ei)i∈N] be the extension of P̂Aω�[X, 〈·|·〉] by the constant (ei)i,
which can be majorized by λi.1, and the axiom ∀i, j ∈ N 〈ei|ej〉 =R δij . For this
system the metatheorem [Koh08, Theorem 17.69.2], see also [GK08],

• relativized to the fragment P̂Aω�+QF-AC0,0 of Aω, cf. [Koh08, Section 17.1,
p. 382] and
• extended by the constant (ei)i and the purely universal axiom for it, cf. [Koh08,
Section 17.5]

holds.
By Theorem 11 a suitable instance of weak-BWX can reduce an instance of

Σ0
n+3-IA to Σ0

n+1-IA. Thus the system P̂Aω�[X, 〈·|·〉, (ei)i∈N] + QF-AC0,0 + Σ0
n+1-IA

proves that a suitable instance of weak-BWX implies A. Applying the metatheorem
to this statement yields terms in Tn such that an application of these terms to Ω
yields a solution of the functional interpretation of A.

This proves the corollary. �

This shows that Kohlenbach’s analysis of Ω∗ (a majorant of a solution of the
functional interpretation of weak-BWX) in [Koh] is optimal.

This analysis and actually even his proof of weak compactness for abstract
Hilbert spaces [Koh10, Theorem 11] shows that only two nested instances of Π0

1-CA
(plus some uses of WKL) are needed to prove an instance of weak-BWX . Thus, the
lower bound on the strength of instances of weak-BWX from Theorems 9 and 11 is
strict in the sense that there is a instance of Π0

3-CA which is not implied by any
instance of weak-BWX .

We now give a reversal for the special case of `2 and analyze the exact compu-
tational content:
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Theorem 13. Each instance of weak-BW given by a bounded sequence (xi)i∈N in `2
is over RCA0 uniformly provable from a suitable instance of Π0

2-CA. More precisely,
there is a program F such that

RCA0 ` ∀(xi)
(
Π0

2-CA(F ((xi)))→weak-BW((xi)i∈N)
)
.

(Again, in RCA0 the program F (h) can be coded as an oracle Turing machine {e}h

for a suitable e ∈ N.)
In particular, each bounded and computable sequences of `2 has a weak cluster

point computable in 0′′.

Proof. We show that provably in RCA0 a cluster point of (xi)i can be computed in
the second Turing jump. The result follows then from the fact that any function
computable in the second Turing jump is recursive in a suitable instance of Π0

2-CA.
We assume that (xi)i is bounded by 1.
Note that the Bolzano-Weierstraß theorem for the space [−1, 1]N (with the prod-

uct metric d
(
(xi)i, (yi)i

)
=
∑∞

i=0
min(|xi−yi|,1)

2i+1 ) is instance-wise equivalent to the
Bolzano-Weierstraß theorem for [−1, 1]. This can easily be seen from the fact that
the Bolzano-Weierstraß theorem for [−1, 1] is instance-wise equivalent to the theo-
rem for the Cantor space 2N and the fact that 2N is isomorphic to (2N)N.

Hence by [Kre11], see also [SK10], one can find a cluster point of the sequence

yi :=
(
〈e0|xi〉, 〈e1|xi〉, . . .

)
in [−1, 1]N by computing an infinite path trough a Σ0

1-tree. Call this cluster point
c = (c0, c1, . . . ) ∈ [−1, 1]N.
Claim.

∑∞
j=0 cj ≤ 1

Proof of claim. Since each yi is norm bounded by 1 we have that
∑k

j=0(yi)2
j ≤ 1.

Now for each k and for each ε there is an i such that |cj − (yi)j | ≤ ε for j ≤ k and
hence

k∑
j=0

(cj)2 ≤
k∑

j=0
((yi)j + ε)2 ≤ 1 + 3(k + 1)ε.

From this the claim follows.
Now one easily checks that the sequence (zi)i∈N with zi := 〈c0, . . . , ci〉 converges

in the `2-norm to a weak cluster point x of (xi)i. This convergence is monotone
in the sense that ‖zi‖ ≤ ‖zi+1‖. Thus the limit point x can be computed in the
Turing jump of (zi)i.

The point x is provably uniformly computable in the second Turing jump of
(xi)i because c is computable in a degree provably low over the first Turing jump
by the low basis theorem ([JS72]). The proof of the low basis theorem is effective
and uniform and it formalizes in RCA0. Therefore the jump of (zi)i and thus x is
computable in the second Turing jump and one can find a suitable F . �

Theorems 9 and 13 yield a classification of the computational strength of weak
compactness on `2:

Corollary 14. For a Turing degree d the following are equivalent:
• d ≥T 0′′ and
• d computes a weak cluster point for each computable, bounded sequence
in `2.
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As a consequence we obtain that the Bolzano-Weierstraß principle for weak com-
pactness is instance-wise strictly stronger than the Bolzano-Weierstraß principle for
the unit interval [0, 1], cf. [Kre11].

Remark 15 (Weihrauch lattice). The proofs of the Theorems 9 and 13 can also be
used to classify the Bolzano-Weierstraß principle for weak compactness in `2 in the
Weihrauch lattice. We do not introduce the notation for the Weihrauch lattice but
refer the reader to [BGM12].

Let BWTweak-`2 :⊆ (`2)N ⇒ `2 be the partial multifunction which maps bounded
sequences of `2 to a weak cluster point of that sequence.

The proof of Theorem 9 immediately yields that

BWTweak-`2 ≥W L̂PO ◦ L̂PO ≡W lim(2).

Whereas the proof of Theorem 13 yields that
BWTweak-`2 ≤W MCT ∗ BWTRN .

The function BWTRN is used to compute the cluster point c ∈ RN, the function
MCT is used for the convergence of (‖zi‖)i. By the same argument as in the proof
BWTR ≡W BWTRN . Since all of these multifunctions are cylinders one may also
strengthen the reducibility to strong Weihrauch reducibility. Thus

BWTweak-`2 ≤sW MCT ∗s BWTR

≤sW lim ∗s L
′

≤sW lim ∗s L1,1

≡sW lim ◦ lim.

(For the last equivalence see [BGM12, Corollary 8.8], which is a consequence of an
analysis of the low basis theorem in the Weihrauch lattice, see [BdBP12].)

In total we obtain that
BWTweak-`2 ≡sW lim(2).

As consequence we also obtain that BWTweak-`2 >sW BWTR.
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