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Reflection

Let T be a theory.

Reflection is the statement

if φ is provable from T , then φ is true.

This statement should be understood internally.



Formalization of reflection

Formulas will coded using the standard Gödel numbers.

Definition (Provability predicate)
Provability predicate:

ProvT (x)

It states that there exists a (code of a) derivation
of the formula coded by x in T .
ProvT (x) is Σ1, assuming T has a c.e. axiom set.
(We will always assume that.)

Definition (Truth predicate)
Truth predicate for Πn-sentences, TrueΠn(x)
TrueΠn(pφq)↔ φ for φ ∈ Πn



Formalization of reflection (cont.)

Theorem
TrueΠn(x) is Πn-definable.
(For n = 0, ∆1-definable.)

Sketch of proof
For n = 1 one can take for TrueΠ1(x) the sentence:
If x codes ∀nφ0(n),
the TM searching for a minimal n with ¬φ0(n)
does not terminate.

Definition (Reflection)
Reflection for a theory T and Πn statements

RFNT (Πn) :≡ ProvT (x)→ TrueΠn(x).



Relation to induction

Let EA := I∆0 + exp.
EA is contained in RCA∗0.

Theorem (Leivant ’83, Ono ’87)
EA ` RFNEA(Πn+2)↔ IΣn (n ≥ 1)

Sketch of proof
→: Let φ(x) ∈ Σn.

Assume BC : φ(0) and IS : ∀x (φ(x)→φ(x+ 1)).
Internally, there is a derivation of φ(d). Apply BC and d-times IS!
RFNEA(Πn+2) gives 1

BC ∧ IS→φ(d)

uniformly for all d.
←: Cut-elimination.



Why reflection?

Theorem (partly K., Yokoyama ’15)
The following are equivalent over IΣ1:

RFNIΣ1(Π3),
well-foundedness of ωω,
Hilbert Basis theorem (Simpson ’88),
Formanek/Lawrence Theorem (Hatzikiriakou, Simpson ’15)
PΣ1 (introduced by Hájek, Paris ’86/’87)
BME1 (introduced by Chong, Slaman, Yang, ’14)
The Ackermann function relative to any total function is total.

In particular, RFNIΣ1(Π3) lies strictly between IΣ1 and IΣ2.
Observe RFNIΣ1(Π3) ≡ RFNRFNEA(Π3)(Π3). (Iterated reflection!)
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Reflection and consistency

Let Con(T ) be the consistency of T .
This can be formulated as ¬ProvT (p⊥q)

Theorem
RFNT (Π1) implies Con(T ).

Sketch of Proof
Suppose ¬Con(T ), then ProvT (p⊥q).
By RFNT (Π1) one gets TrueΠ1(p⊥q), i.e., ⊥. �

Let Con(Πn + T ) be the consistency of T plus all Πn-sentences.
This can be formulated as ∀x TrueΠn(x)→¬ProvT (¬̃x).

Theorem
RFNT (Πn+1)↔ Con(Πn + T ).



Existence of models

Theorem (Simpson)
WKL∗0 proves the completeness theorem, i.e., every consistent theory has a
model.

ModelM is here coded a the set of (Gödel numbers of) sentences true in
M.



Existence of models (cont.)

Theorem
Let n ≥ 1 and T be a theory.
A model (M,S) |= RCA0 +BΣn+1 + Con(Πn + T ) has an n-elementary
end extension I satisfying T .

Proof.
Let (M,S) be a second-order model with
(M,S) |= RCA0 +BΣn+1 + Con(Πn + T ).
Then

(
M,∆0

n+1(S)
)
|= RCA∗0. (Here we use BΣn+1.)

In this model the set of all true Πn-sentences X exists.
Extend

(
M,∆0

n+1(S)
)
to satisfy WKL∗0.

Let T ′ := T +X + “constants for each element ofM”.
By Con(Πn + T ), the theory T ′ is consistent. By WKL there exists a
model of T ′. By definition T ′ is an n-elementary end-extension.



Existence of models (cont.)

Remark
To make sure that is a true end-extension one can replace T ′ by
T ′ + ¬Con(T ′). By Gödel’s incompleteness theorem, T ′ + ¬Con(T ′) is also
consistent.

Remark
In the previous proof we used BΣn only to get the set of all true
Πn-sentences. If the end-extension I should satisfy one sentence
Πn-sentence then RCA∗0 is sufficient.



Existence of models (cont.)

Example
Over RCA∗0 the statement Con(Π1 + I∆0 + exp) proves the totality of

superexp, i.e., n 7→ 22.
. .
n

︸ ︷︷ ︸
n times

.

Proof.
Let (M,S) |= RCA∗0 + Con(Π1 + I∆0 + exp).
Assume that superexp is not total.
Then there is an c ∈M, such that superexp(c) is does not exists.
In detail, let φ(x, y) be the Σ1-formula defining superexp.
ThenM |= ∀y ¬φ(c, y).
Note that we have

M |= ∃y φ(0, y), ∀x (∃y φ(c, y)→∃y φ(c+ 1, y)) .

. . .



Proof (continued).
Let I be a true end-extension ofM such that
I |= I∆0 + exp + ∀y ¬φ(c, y).
We have

I |= ∃y φ(0, y),∀x (∃y φ(x, y)→∃y φ(x+ 1, y)) .

Working inM, using I∆0(I), we can apply the implication c times
and obtain that I |= ∃y φ(c, y). � 2



Iterated reflection
Notation
Let T be a theory.

(T )n0 := T ,
(T )nα+1 := (T )nα + RFN(T )nα(Πn),
(T )nλ :=

⋃
α<λ(T )nα.

Example
(EA)3

1 = IΣ1,
(EA)3

2 = (IΣ1)3
1 = ”well-foundedness of ωω”,

(EA)4
1 = IΣ2,

(EA)2
1 = I∆0 + exp + superexp.

(EA)2
ω = PRA.

Theorem (Beklemishev ’97)
(EA)2

α is the same as Grzegorczyk arithmetic of level α+ 3.



Fine structure theorem

Theorem (Schemerl’s formula, ’79,)
Let n ≥ 1 and T be a Πn+1-axiomatic extension of EA.
(T )n+1

1 is Πn-conservative over (T )nω. (n ≥ 1)

We prove the case n = 2, T = IΣ1.
Proof we proceed by contraposition:
For φ ∈ Π2:

If (T )2
ω 0 φ then (T )3

1 0 φ.

This will be shown by a model construction.
The construction is a refinement of McAllon ’78.



Proof of Schmerl’s formula

Given is a non-standard model I0 |= (T )2
ω + ¬φ.

Goal: Construct a modelM |= (T )3
1 + ¬φ.

Take a non-standard b ∈ I0 such that I0 |= (T )2
b .

Let I1 be a true Π1-elementary end extension satisfying (T )2
b−1, as

constructed before.
By construction I0 |= Prov(pψq) then I1 |= ψ.
Iterate this construction to get In |= (T )2

b−n.
LetM :=

⋃
n∈N In.

Lemma
M |= RFNIΣ1(Π3)



Proof of Schmerl’s formula (cont.)

Lemma
M |= RFNIΣ1(Π3)

Proof.
Let ψ = ∀x ∃y ∀z ψ0(x, y, z).
SupposeM |= Prov(pψq). Then there is a derivation of ψ in Ik1 for
some k1 ∈ N.
Given cx ∈M. Then cx ∈ Ik2 for a k2 ∈ N.
Imax(k1,k2)+1 |= ∃y ∀z ψ0(cx, y, z).
In other words, there exists cy ∈ Imax(k1,k2)+1, s.t.
Imax(k1,k2)+1 |= ∀z ψ0(cx, cy, z).
By Π1-elementarity

In,M |= ψ0(cx, cy, z)

for n ≥ max(k1, k2) + 1.



Proof of Schmerl’s formula

Original proof of Schmerl proceeds by comparing well-orders.
This model-theoretic proof is new.

Note that it only works for reasonably strong theories T .
IΣ1 is certainly enough.
That means n ≥ 2 or T contains IΣ1.
This is need to extend the model to a model of WKL. Here we use
Baire Category theorem for the forcing extension.
By Simpson ’14 the Baire Category theorem is equivalent to IΣ1.
Natural reflection model.

Question
What is the strength of extending a modelM |= RCA∗0 to a model of
M |= WKL∗0?



Construction of a model of SRT2
2

Theorem (Chong, Slaman, Yang, ’14)
RCA0 + SRT2

2 does not prove IΣ2.

Proof proceeds in two steps:
1 Construct a suitable first-order model.
2 Extend the model to a second-order model using forcing.

Theorem
RCA0 + SRT2

2 does not prove the well-foundedness of ωω2 .

1 Use the model constructed earlier.
2 Extend the model to a second-order model using (a different) forcing.

This theorem follows also from K. Yokoama and L. Patey.



Full fine structure theorem

Theorem (Fine structure theorem, Schmerl ’79)
For each n, k ≥ 1, and all ordinals α ≥ 1, β, the theory ((EA)n+k

α )nβ proves
the same Πn-sentences as (EA)nωk(α)·(1+β).

Follows from iterations of Schmerl’s formula.
For this to work it is sufficient if n ≥ 3.



Note on the Existence of Models theorem

Theorem
Let n ≥ 1 and T be a theory.
RCA0 +BΣn+1 + Con(Πn + T ) proves that there exists an n-elementary
end extension I satisfying T .

The conclusion of this theorem

There exists a Πn-elementary model

sometimes also called reflection. This theorem say that these two forms of
reflection coincide.
For stronger Σ1

k sets this has been analyzed. This is on the level Π1
∞-TI.

(Friedman, see Simpson’s Subsystems of Second Order Arithmetic.)



Summary

Model-theoretic proof of the fine structure theorem
Uses Reverse Mathematics techniques

Construction for models of well-foundedness of ωω.
BME1
Hilbert-Basis theorem, Formanek/Lawrence Theorem

Thank you for your attention!


