Reflection and the fine structure theorem

Alexander P. Kreuzer

joint work with Chi Tat Chong and Yang Yue

National University of Singapore

JSPS-IMS Workshop 15.1.2016 Let T be a theory.

Reflection is the statement

if ϕ is provable from T, then ϕ is true.

This statement should be understood internally.

Formalization of reflection

Formulas will coded using the standard Gödel numbers.

Definition (Provability predicate)

• Provability predicate:

 $\operatorname{Prov}_T(x)$

- It states that there exists a (code of a) derivation of the formula coded by x in T.
- $\operatorname{Prov}_T(x)$ is Σ_1 , assuming T has a c.e. axiom set. (We will always assume that.)

Definition (Truth predicate)

- Truth predicate for Π_n -sentences, $\operatorname{True}_{\Pi_n}(x)$
- $\operatorname{True}_{\Pi_n}(\ulcorner \phi \urcorner) \leftrightarrow \phi$ for $\phi \in \Pi_n$

Theorem

True_{Π_n}(x) is Π_n -definable. (For n = 0, Δ_1 -definable.)

Sketch of proof

For n = 1 one can take for $\operatorname{True}_{\Pi_1}(x)$ the sentence: If $x \operatorname{codes} \forall n \phi_0(n)$, the TM searching for a minimal n with $\neg \phi_0(n)$ does **not terminate**.

Definition (Reflection)

Reflection for a theory T and Π_n statements

 $\operatorname{RFN}_T(\Pi_n) :\equiv \operatorname{Prov}_T(x) \to \operatorname{True}_{\Pi_n}(x).$

Relation to induction

Let $EA := I\Delta_0 + exp$. EA is contained in RCA_0^* .

Theorem (Leivant '83, Ono '87)

 $\mathsf{EA} \vdash \mathtt{RFN}_{\mathsf{EA}}(\Pi_{n+2}) \leftrightarrow I\Sigma_n \qquad (n \ge 1)$

Sketch of proof

 $\begin{array}{l} \rightarrow: \ \mathsf{Let} \ \phi(x) \in \Sigma_n. \\ \ \mathsf{Assume} \ \mathsf{BC} : \phi(0) \ \text{and} \ \mathsf{IS} : \forall x \ (\phi(x) \rightarrow \phi(x+1)). \\ \ \mathsf{Internally, there is a derivation of} \ \phi(d). \ \mathsf{Apply} \ \mathsf{BC} \ \mathsf{and} \ d\text{-times IS!} \\ \ \mathsf{RFN}_{\mathsf{EA}}(\Pi_{n+2}) \ \mathsf{gives} \ 1 \end{array}$

 $\mathsf{BC} \land \mathsf{IS} \to \phi(d)$

uniformly for all d.

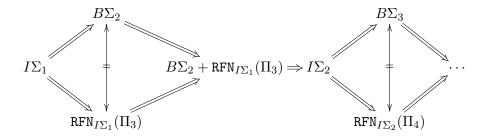
 $\leftarrow: \ \ Cut-elimination.$

Theorem (partly K., Yokoyama '15)

The following are equivalent over $I\Sigma_1$:

- RFN $_{I\Sigma_1}(\Pi_3)$,
- well-foundedness of ω^{ω} ,
- Hilbert Basis theorem (Simpson '88),
- Formanek/Lawrence Theorem (Hatzikiriakou, Simpson '15)
- $P\Sigma_1$ (introduced by Hájek, Paris '86/'87)
- BME₁ (introduced by Chong, Slaman, Yang, '14)
- The Ackermann function relative to any total function is total.
- In particular, $\mathtt{RFN}_{I\Sigma_1}(\Pi_3)$ lies strictly between $I\Sigma_1$ and $I\Sigma_2$.
- Observe $\mathtt{RFN}_{I\Sigma_1}(\Pi_3) \equiv \mathtt{RFN}_{\mathtt{RFN}_{EA}(\Pi_3)}(\Pi_3)$. (Iterated reflection!)

Extended Paris-Kirby hierarchy



Reflection and consistency

- Let $\operatorname{Con}(T)$ be the consistency of T.
- This can be formulated as $\neg \operatorname{Prov}_T(\ulcorner \bot \urcorner)$

Theorem

 $\operatorname{RFN}_T(\Pi_1)$ implies $\operatorname{Con}(T)$.

Sketch of Proof

- Suppose $\neg \operatorname{Con}(T)$, then $\operatorname{Prov}_T(\ulcorner \bot \urcorner)$.
- By $\operatorname{RFN}_T(\Pi_1)$ one gets $\operatorname{True}_{\Pi_1}(\ulcorner \bot \urcorner)$, i.e., \bot . 4
- Let $Con(\Pi_n + T)$ be the consistency of T plus all Π_n -sentences.
- This can be formulated as $\forall x \operatorname{True}_{\prod_n}(x) \to \neg \operatorname{Prov}_T(\tilde{\neg}x)$.

Theorem

 $\operatorname{RFN}_T(\Pi_{n+1}) \leftrightarrow \operatorname{Con}(\Pi_n + T).$

Theorem (Simpson)

 WKL_0^* proves the completeness theorem, i.e., every consistent theory has a model.

Model ${\mathcal M}$ is here coded a the set of (Gödel numbers of) sentences true in ${\mathcal M}.$

Theorem

Let $n \ge 1$ and T be a theory. A model $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ has an *n*-elementary end extension \mathcal{I} satisfying T.

Proof.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T).$
- Then $(\mathcal{M}, \Delta^0_{n+1}(\mathcal{S})) \models \mathsf{RCA}^*_0$. (Here we use $B\Sigma_{n+1}$.)
- In this model the set of all true Π_n -sentences X exists.
- Extend $(\mathcal{M}, \Delta^0_{n+1}(\mathcal{S}))$ to satisfy WKL*.
- Let T' := T + X + "constants for each element of \mathcal{M} ".
- By Con(Π_n + T), the theory T' is consistent. By WKL there exists a model of T'. By definition T' is an n-elementary end-extension.

Remark

To make sure that is a true end-extension one can replace T' by $T' + \neg \operatorname{Con}(T')$. By Gödel's incompleteness theorem, $T' + \neg \operatorname{Con}(T')$ is also consistent.

Remark

In the previous proof we used $B\Sigma_n$ only to get the set of all true Π_n -sentences. If the end-extension \mathcal{I} should satisfy one sentence Π_n -sentence then RCA^{*}₀ is sufficient.

Existence of models (cont.)

Example

Over RCA₀^{*} the statement Con($\Pi_1 + I\Delta_0 + \exp$) proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2^{\cdot \cdot \cdot n}}}_{n \text{ times}}$.

Proof.

• Let
$$(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0^* + \mathsf{Con}(\Pi_1 + I\Delta_0 + \exp).$$

• Assume that superexp is not total. Then there is an $c \in \mathcal{M}$, such that superexp(c) is does not exists. In detail, let $\phi(x, y)$ be the Σ_1 -formula defining superexp. Then $\mathcal{M} \models \forall y \neg \phi(c, y)$.

Note that we have

$$\mathcal{M} \models \exists y \, \phi(0, y), \forall x \; (\exists y \, \phi(c, y) \to \exists y \, \phi(c+1, y)) \,.$$

. . .

Proof (continued).

• Let \mathcal{I} be a true end-extension of \mathcal{M} such that $\mathcal{I} \models I\Delta_0 + \exp + \forall y \neg \phi(c, y).$

We have

$$\mathcal{I} \models \exists y \, \phi(0, y), \forall x \, \left(\exists y \, \phi(x, y) \rightarrow \exists y \, \phi(x+1, y) \right).$$

• Working in \mathcal{M} , using $I\Delta_0(\mathcal{I})$, we can apply the implication c times and obtain that $\mathcal{I} \models \exists y \, \phi(c, y)$.

Iterated reflection

Notation

Let ${\boldsymbol{T}}$ be a theory.

•
$$(T)_0^n := T$$
,

•
$$(T)_{\alpha+1}^n := (T)_{\alpha}^n + \operatorname{RFN}_{(T)_{\alpha}^n}(\Pi_n),$$

•
$$(T)^n_{\lambda} := \bigcup_{\alpha < \lambda} (T)^n_{\alpha}.$$

Example

•
$$(\mathsf{EA})_1^3 = I \Sigma_1$$
,

•
$$(\mathsf{EA})_2^3 = (I\Sigma_1)_1^3 =$$
 "well-foundedness of ω^{ω} ",

•
$$(\mathsf{EA})_1^4 = I\Sigma_2$$
,

•
$$(\mathsf{EA})_1^2 = I\Delta_0 + \mathsf{exp} + \mathsf{superexp}.$$

•
$$(\mathsf{EA})^2_\omega = \mathsf{PRA}.$$

Theorem (Beklemishev '97)

 $(\textit{EA})^2_{\alpha}$ is the same as Grzegorczyk arithmetic of level $\alpha + 3$.

Theorem (Schemerl's formula, '79,)

Let $n \geq 1$ and T be a Π_{n+1} -axiomatic extension of EA. $(T)_1^{n+1}$ is Π_n -conservative over $(T)_{\omega}^n$. $(n \geq 1)$

- We prove the case n = 2, $T = I\Sigma_1$.
- Proof we proceed by contraposition: For $\phi \in \Pi_2$:

$$\text{ If } (T)^2_\omega \nvDash \phi \quad \text{then} \quad (T)^3_1 \nvDash \phi.$$

- This will be shown by a model construction.
- The construction is a refinement of McAllon '78.

Given is a non-standard model $\mathcal{I}_0 \models (T)^2_{\omega} + \neg \phi$.

Goal: Construct a model $\mathcal{M} \models (T)_1^3 + \neg \phi$.

Take a non-standard $b \in \mathcal{I}_0$ such that $\mathcal{I}_0 \models (T)_b^2$.

Let \mathcal{I}_1 be a true Π_1 -elementary end extension satisfying $(T)_{b-1}^2$, as constructed before.

By construction $\mathcal{I}_0 \models \operatorname{Prov}(\ulcorner\psi\urcorner)$ then $\mathcal{I}_1 \models \psi$. Iterate this construction to get $\mathcal{I}_n \models (T)_{b-n}^2$. Let $\mathcal{M} := \bigcup_{n \in \mathbb{N}} \mathcal{I}_n$.

Lemma

 $\mathcal{M} \models \mathtt{RFN}_{I\Sigma_1}(\Pi_3)$

Proof of Schmerl's formula (cont.)

Lemma

 $\mathcal{M} \models \mathtt{RFN}_{I\Sigma_1}(\Pi_3)$

Proof.

- Let $\psi = \forall x \exists y \forall z \psi_0(x, y, z)$.
- Suppose $\mathcal{M} \models \operatorname{Prov}(\ulcorner \psi \urcorner)$. Then there is a derivation of ψ in \mathcal{I}_{k_1} for some $k_1 \in \mathbb{N}$.
- Given $c_x \in \mathcal{M}$. Then $c_x \in \mathcal{I}_{k_2}$ for a $k_2 \in \mathbb{N}$.
- $\mathcal{I}_{\max(k_1,k_2)+1} \models \exists y \, \forall z \, \psi_0(c_x,y,z).$
- In other words, there exists $c_y \in \mathcal{I}_{\max(k_1,k_2)+1}$, s.t. $\mathcal{I}_{\max(k_1,k_2)+1} \models \forall z \, \psi_0(c_x, c_y, z).$
- By Π₁-elementarity

$$\mathcal{I}_n, \mathcal{M} \models \psi_0(c_x, c_y, z)$$

for $n \ge \max(k_1, k_2) + 1$.

- Original proof of Schmerl proceeds by comparing well-orders.
- This model-theoretic proof is new.
 - Note that it only works for reasonably strong theories T. $I\Sigma_1$ is certainly enough.
 - That means $n \geq 2$ or T contains $I\Sigma_1$.
 - This is need to extend the model to a model of WKL. Here we use Baire Category theorem for the forcing extension.
 - By Simpson '14 the Baire Category theorem is equivalent to $I\Sigma_1$.
 - Natural reflection model.

Question

What is the strength of extending a model $\mathcal{M} \models \mathsf{RCA}_0^*$ to a model of $\mathcal{M} \models \mathsf{WKL}_0^*$?

Theorem (Chong, Slaman, Yang, '14)

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove $I\Sigma_2$.

Proof proceeds in two steps:

- Construct a suitable first-order model.
- ② Extend the model to a second-order model using forcing.

Theorem

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove the well-foundedness of ω^{ω^2} .

- Use the model constructed earlier.
- ② Extend the model to a second-order model using (a different) forcing.

This theorem follows also from K. Yokoama and L. Patey.

Theorem (Fine structure theorem, Schmerl '79)

For each $n, k \ge 1$, and all ordinals $\alpha \ge 1$, β , the theory $((\mathsf{EA})^{n+k}_{\alpha})^n_{\beta}$ proves the same \prod_n -sentences as $(\mathsf{EA})^n_{\omega_k(\alpha)\cdot(1+\beta)}$.

Follows from iterations of Schmerl's formula. For this to work it is sufficient if $n \ge 3$.

Theorem

Let $n \ge 1$ and T be a theory. $\mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ proves that there exists an n-elementary end extension \mathcal{I} satisfying T.

The conclusion of this theorem

There exists a Π_n -elementary model

sometimes also called *reflection*. This theorem say that these two forms of reflection coincide.

For stronger Σ_k^1 sets this has been analyzed. This is on the level Π_{∞}^1 -TI. (Friedman, see Simpson's Subsystems of Second Order Arithmetic.)

- Model-theoretic proof of the fine structure theorem
 - Uses Reverse Mathematics techniques
- Construction for models of well-foundedness of ω^{ω} .
 - BME₁
 - Hilbert-Basis theorem, Formanek/Lawrence Theorem

Thank you for your attention!