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Reflection

Let T be a theory.

Reflection is the statement

if ¢ is provable from T', then ¢ is true. J

This statement should be understood internally.



Formalization of reflection

Formulas will coded using the standard Godel numbers.

Definition (Provability predicate)

@ Provability predicate:
Provy(z)

o It states that there exists a (code of a) derivation
of the formula coded by x in T'.

@ Provy(x) is ¥, assuming T has a c.e. axiom set.
(We will always assume that.)

Definition (Truth predicate)

@ Truth predicate for II,,-sentences, Trueyy,, ()
o Truer, ("¢") + ¢ for ¢ €11,




Formalization of reflection (cont.)

Trueyy, (x) is I1,,-definable.
(For n = 0, Ay-definable.)

Sketch of proof

For n = 1 one can take for Truery, (z) the sentence:

If = codes Vn ¢p(n),
the TM searching for a minimal n with —¢g(n)
does not terminate. )

Definition (Reflection)

Reflection for a theory T' and II,, statements

RFNp(II,) := Provy(z) — Truer,, ().




Relation to induction

Let EA := I A + exp.
EA is contained in RCAG.

Theorem (Leivant '83, Ono '87)

EA - RFNEA(Hn+2) — I, (n > 1)

Sketch of proof
—: Let ¢(z) € Zy.
Assume BC : ¢(0) and IS : Vz (¢(z) = ¢(x + 1)).
Internally, there is a derivation of ¢(d). Apply BC and d-times IS!
RFNga (I, 42) gives 1
BC A IS— ¢(d)

uniformly for all d.

<—: Cut-elimination.




Why reflection?

Theorem (partly K., Yokoyama '15)

The following are equivalent over I3 :

RFN/y, (I13),

well-foundedness of w®,

Hilbert Basis theorem (Simpson '88),

Formanek/Lawrence Theorem (Hatzikiriakou, Simpson '15)
PY; (introduced by Hajek, Paris '86/°87)

BME; (introduced by Chong, Slaman, Yang, '14)

The Ackermann function relative to any total function is total.

In particular, RFNyy, (II3) lies strictly between I¥; and 3.
Observe RFN;y;, (I13) = RFNggy,, , (115) (I13). (Iterated reflection!)




Extended Paris-Kirby hierarchy

Bls B3

AT RN

I3 B¥5 + RFNry, (H3) =13

N N

RFN/s, (Hg) RFNys, (H4)



Reflection and consistency

@ Let Con(7') be the consistency of T'.

@ This can be formulated as =Provp("L™)

RFN7(IIy) implies Con(T).

Sketch of Proof

@ Suppose =Con(T'), then Provy("L7).
e By RFNp(II;) one gets Truer, ("L7), ie., L. %

@ Let Con(II,, + T be the consistency of T plus all II,,-sentences.
@ This can be formulated as Vx Truer, (z) — —Provy(=z).

RFNT(Hn+1) <~ Con(Hn T+ T)




Existence of models

Theorem (Simpson)

WKLY, proves the completeness theorem, i.e., every consistent theory has a
model.

Model M is here coded a the set of (Gédel numbers of ) sentences true in
M.



Existence of models (cont.)

Theorem

Letn > 1 and T be a theory.
A model (M, S) = RCAy + BX, 41 + Con(Il, + T') has an n-elementary
end extension T satisfying T

o Let (M,S) be a second-order model with
(M,S) = RCAg+ BY,, 11 + Con(Il,, + 7).

Then (M, A% (S)) = RCA. (Here we use BY,41.)
In this model the set of all true II,,-sentences X exists.
Extend (M, A% (S)) to satisfy WKL,

Let 77 := T + X + “constants for each element of M".

By Con(Il,, + T'), the theory 7" is consistent. By WKL there exists a
model of T". By definition T” is an n-elementary end-extension. [

v




Existence of models (cont.)

Remark

To make sure that is a true end-extension one can replace 7" by
T' + =Con(T"). By Godel's incompleteness theorem, 7" + —Con(1”) is also
consistent.

v

Remark

In the previous proof we used B>, only to get the set of all true
II,,-sentences. If the end-extension Z should satisfy one sentence
IL,,-sentence then RCA( is sufficient.




Existence of models (cont.)

Over RCA(; the statement Con(II; + IAg + exp) proves the totality of

superexp, i.e., n+— 22 |

n times

| {

Proof.
o Let (M,S) = RCAj + Con(IT; + IAg + exp).
@ Assume that superexp is not total.
Then there is an ¢ € M, such that superexp(c) is does not exists.
In detail, let ¢(x,y) be the ¥;-formula defining superexp.
Then M = Vy —¢(c,y).

@ Note that we have

M E Ty é(0,y),Ve (Fy d(c,y) =y dp(c+1,y)) .




Proof (continued).

@ Let 7 be a true end-extension of M such that
T | IAp + exp + Yy —é(c, y).
@ We have

Z = 3y #(0,y), Vo 3y d(z,y) = Iy d(z + 1,y)).

e Working in M, using IAy(Z), we can apply the implication ¢ times
and obtain that Z = Jy ¢(c,y). 4 O

v




Iterated reflection

Notation
Let T be a theory.
o (Mg :=T,

° (T)at1 = (T)a + REN(yn (1),
° (1)} = Uaca(T)a-

o (EA)2 =1%4,

e (EA)3 = (I%1)3 = "well-foundedness of w*”,
o (EA)! = IS,

o (EA)? = IAg + exp + superexp.

o (EA)2 = PRA.

Theorem (Beklemishev '97)

(EA)2 is the same as Grzegorczyk arithmetic of level o + 3.




Fine structure theorem

Theorem (Schemerl's formula, '79,)

Let n > 1 and T be a Il,,41-axiomatic extension of EA.
(T)}* is T1,,-conservative over (T)". (n > 1)

@ We prove the case n =2, T = 3.

@ Proof we proceed by contraposition:
For ¢ € Ila:
If (T)2 ¥ ¢ then (T)3F ¢.

@ This will be shown by a model construction.

@ The construction is a refinement of McAllon '78.



Proof of Schmerl’s formula

Given is a non-standard model Zy = (T)2 + —¢. )

Goal: Construct a model M |= (T)3 + —¢. )

Take a non-standard b € Zy such that Zy = (T)2.
Let Z; be a true IIj-elementary end extension satisfying (T)g_l, as
constructed before.

By construction Zy |= Prov("¢™") then Z; = 9.

Iterate this construction to get Z,, = (T)7 ..

Let M = UTLEN ITL

M |= RFN 5, (IT3)




Proof of Schmerl's formula (cont.)

M ): RFN;y, (Hg)

o Let ¢ =VaIyVze(x,y,2).

@ Suppose M = Prov("+"). Then there is a derivation of ¢ in Zj, for
some k1 € N.

o Given ¢, € M. Then ¢, € 7y, for a ky € N.

° Imax(kl,l@)-‘rl ): JyVz @Z)O(Cxa Y, Z)

@ In other words, there exists ¢; € Zyax(ky ko)+1, S-t-
Imax(kl,k2)+1 ): Vz ¢0 (Cma Cy, Z)

o By II;-elementarity

Ina M ): w()(ca?v Cy, 2)

for n > max(kl, kg) + 1. L]




Proof of Schmerl’s formula

@ Original proof of Schmerl proceeds by comparing well-orders.
@ This model-theoretic proof is new.
o Note that it only works for reasonably strong theories T
I3, is certainly enough.
That means n > 2 or T' contains 1X;.
This is need to extend the model to a model of WKL. Here we use
Baire Category theorem for the forcing extension.
By Simpson '14 the Baire Category theorem is equivalent to IX;.
o Natural reflection model.

Question

What is the strength of extending a model M = RCA{ to a model of
M = WKL§?




Construction of a model of SRT%

Theorem (Chong, Slaman, Yang, '14)
RCA( + SRT2 does not prove I%.

Proof proceeds in two steps:
@ Construct a suitable first-order model.

@ Extend the model to a second-order model using forcing.

RCA, + SRT3 does not prove the well-foundedness of W, \

@ Use the model constructed earlier.

@ Extend the model to a second-order model using (a different) forcing.

This theorem follows also from K. Yokoama and L. Patey.




Full fine structure theorem

Theorem (Fine structure theorem, Schmerl '79)

For each n,k > 1, and all ordinals o > 1, 3, the theory ((EA)ZH“)E proves
the same 11, -sentences as (EA)Zk(a)-(Hﬂ)'

Follows from iterations of Schmerl's formula.
For this to work it is sufficient if n > 3.



Note on the Existence of Models theorem

Letn > 1 and T be a theory.
RCAy + BY,,+1 + Con(Il,, + T') proves that there exists an n-elementary
end-extension 1L satisfying T .

The conclusion of this theorem
There exists a II,-elementary model

sometimes also called reflection. This theorem say that these two forms of
reflection coincide.

For stronger X} sets this has been analyzed. This is on the level I1L -TI.
(Friedman, see Simpson's Subsystems of Second Order Arithmetic.)



@ Model-theoretic proof of the fine structure theorem
o Uses Reverse Mathematics techniques
@ Construction for models of well-foundedness of w®.

e BME;
o Hilbert-Basis theorem, Formanek/Lawrence Theorem

Thank you for your attention!



