Non-principal ultrafilters, program extraction and higher order reverse mathematics

Alexander P. Kreuzer

ENS Lyon

Workshop on Reverse Mathematics and Type Theory, 2013

1 The logical systems and the functional interpretation

2 Ultrafilters

- 3 The results
- 4 Idempotent ultrafilters
- 5 Elimination of monotone Skolem functions

Higher order arithmetic

Definition (RCA $_0^{\omega}$, Recursive comprehension, Kohlenbach '05)

 RCA_0^ω is the finite type extension of RCA_0 :

- Sorted into type 0 for \mathbb{N} , type 1 for $\mathbb{N}^{\mathbb{N}}$, type 2 for $\mathbb{N}^{\mathbb{N}^{\mathbb{N}}}$, ...,
- contains basic arithmetic: 0, successor, +, \cdot , λ -abstraction,
- quantifier-free axiom of choice restricted to choice of numbers over functions (QF-AC^{1,0}), i.e.,

$$\forall f^1 \exists y^0 \operatorname{A}_{\operatorname{\!\! Qf}}(f,y) \mathop{\rightarrow} \exists G^2 \forall f^1 \operatorname{A}_{\operatorname{\!\! Qf}}(f,G(f))$$

• and a recursor R_0 , which provides primitive recursion (for numbers),

$$R_0(0, y^0, f) = y,$$
 $R_0(x+1, y, f) = f(R_0(x, y, f), x),$

• Σ_1^0 -induction.

The closed terms of RCA₀^{ω} will be denoted by T_0 . In Kohlenbach's books this system is denoted by $\widehat{\text{E-PA}}^{\omega} \upharpoonright + \text{QF-AC}^{1,0}$.

Theorem (Functional interpretation)

$$\mathsf{RCA}_0^\omega \vdash \forall x \,\exists y \,\mathsf{A}_{qf}(x,y)$$

the one can extract a term $t \in T_0$, such that

$$\mathsf{RCA}_0^\omega \vdash \forall x \mathsf{A}_{qf}(x, t(x)).$$

Sketch of proof.

Apply the following proof translations:

- Elimination of extensionality,
- a negative translation,
- Gödel's Dialectica translation.

See Kohlenbach: Applied Proof Theory.

Each formula can be assigned an equivalent $\forall \exists\mbox{-formula}.$ E.g.

$$A :\equiv \forall x \,\exists y \,\forall z \, A_{qf}(x, y, z)$$

will be assigned

$$A^{ND} \equiv \forall x \,\forall f_z \,\exists y \, A_{qf}(x, y, f_z(y)).$$

• This assignment preserves logical rules, like

$$\frac{A \qquad A \to B}{B},$$

and exhibits programs.

 Thus, to prove the program extraction theorem we only have to provide programs for the axioms.

Arithmetical comprehension

Let Π_1^0 -CA be the schema

$$\forall f \exists g \,\forall n \, \left(g(n) = 0 \leftrightarrow \forall x \, f(n, x) = 0\right).$$

Define ACA^{ω} to be RCA^{ω} + Π_1^0 -CA.

Let Feferman's μ be

$$\mu(f) := \begin{cases} \min\{x \mid f(x) = 0\} & \text{if } \exists x f(x) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Denote by (μ) be the statement that μ exists.

Theorem

- $\mathsf{RCA}_0^\omega + (\mu) \vdash \Pi_1^0 \text{-}\mathsf{CA}$
- $\mathsf{RCA}_0^\omega + (\mu)$ is $\Pi^1_2\text{-}conservative over <math display="inline">\mathsf{ACA}_0^\omega$

Theorem (Functional interpretation relative to μ)

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall x \,\exists y \,\mathsf{A}_{qf}(x, y)$$

the one can extract a term $t \in T_0[\mu]$, such that

lf

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall x \, \mathsf{A}_{qf}(x, t(x)).$$

We interpreted ACA₀^{ω} non-constructively using μ . One can also interpret ACA₀^{ω} directly using bar recursion. See Avigad, Feferman in Handbook of Proof Theory

Filter

Filter

A set $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ is a *filter over* \mathbb{N} if

•
$$\forall X, Y \ (X \in \mathcal{F} \land X \subseteq Y \to Y \in \mathcal{F}),$$

•
$$\forall X, Y \ (X, Y \in \mathcal{F} \rightarrow X \cap Y \in \mathcal{F}),$$

•
$$\emptyset \notin \mathcal{F}$$

Ultrafilter

A filter \mathcal{F} is an *ultrafilter* if it is maximal, i.e., $\forall X \ \left(X \in \mathcal{F} \lor \overline{X} \in \mathcal{F}\right)$

 $\mathcal{P}_n := \{X \subseteq \mathbb{N} \mid n \in X\}$ is an ultrafilter. These filters are called *principal*. The Fréchet filter $\{X \subseteq \mathbb{N} \mid X \text{ cofinite}\}$ is a filter but not an ultrafilter.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if • $\forall X \ (X \in \mathcal{U} \lor \overline{X} \in \mathcal{U}),$ • $\forall X, Y \ (X \in \mathcal{U} \land X \subseteq Y \to Y \in \mathcal{U}),$ • $\forall X, Y \ (X, Y \in \mathcal{U} \to X \cap Y \in \mathcal{U}),$ • $\forall X \ (X \in \mathcal{U} \to X \text{ is infinite}).$

The existence of a non-principal ultrafilter is not provable in ZF.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if • $\forall X \ (X \in \mathcal{U} \lor \overline{X} \in \mathcal{U}),$ • $\forall X, Y \ (X \in \mathcal{U} \land X \subseteq Y \to Y \in \mathcal{U}),$ • $\forall X, Y \ (X, Y \in \mathcal{U} \to X \cap Y \in \mathcal{U}),$ • $\forall X \ (X \in \mathcal{U} \to X \text{ is infinite}).$

Coding sets as characteristic function, i.e, $n \in X :\equiv [X(n) = 0]$, this can be formulated in RCA_0^{ω} :

$$(\mathcal{U}): \begin{cases} \exists \mathcal{U}^2 \left(\ \forall X^1 \ \left(X \in \mathcal{U} \lor \overline{X} \in \mathcal{U} \right) \\ \land \forall X^1, Y^1 \ \left(X \cap Y \in \mathcal{U} \to Y \in \mathcal{U} \right) \\ \land \forall X^1, Y^1 \ \left(X, Y \in \mathcal{U} \to (X \cap Y) \in \mathcal{U} \right) \\ \land \forall X^1 \ \left(X \in \mathcal{U} \to \forall n \ \exists k > n \ (k \in X) \right) \\ \land \forall X^1 \ \left(\mathcal{U}(X) =_0 \operatorname{sg}(\mathcal{U}(X)) =_0 \mathcal{U}(\lambda n. \operatorname{sg}(X(n))) \right) \end{cases}$$

Lower bound on the strength of $\mathsf{RCA}_0^\omega + (\mathcal{U})$

Theorem (K.)

$$\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash (\mu)$$

In particular, $\mathsf{RCA}_0^\omega + (\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let
$$f \colon \mathbb{N} \to \mathbb{N}$$
 and set $X_f := \{n \mid \exists m \leq n \ f(m) = 0\}$. Then

$$\exists n \ (f(n) = 0) \iff X_f \text{ is cofinite} \\ \iff X_f \in \mathcal{U}$$

Thus

$$\forall f (X_f \in \mathcal{U} \to \exists n (f(n) = 0 \land \forall n' < n f(n) \neq 0))$$

QF-AC^{1,0} yields a functional satisfying (μ) .

Upper bound on the strength of $\mathsf{RCA}_0^\omega + (\mathcal{U})$

Theorem (K.)

 $\mathsf{RCA}_0^\omega + (\mathcal{U}) \text{ is } \Pi_2^1 \text{-conservative over } \mathsf{RCA}_0^\omega + (\mu) \text{ and thus also over } \mathsf{ACA}_0^\omega.$

Proof sketch

Suppose $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \mathsf{A}(f,g)$ and A does not contain \mathcal{U} .

() The functional interpretation yields a term $t \in T_0[\mu]$, such that

 $\forall f \mathsf{A}(f, t(\mathcal{U}, f)).$

2 Normalizing t, such that each occurrence of \mathcal{U} in t is of the form

$$\mathcal{U}(t'(n^0))$$
 for a term $t'(n^0)\in T_0[\mathcal{U},\mu,f].$

In particular, U is only used on countably many sets (for each fixed f). Build in RCA₀^{ω} + (μ) a filter which acts on these sets as ultrafilter.

Step 1: Functional interpretation

Suppose $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f^1 \exists g^1 \mathsf{A}(f,g)$ where A is arithmetical and does not contain \mathcal{U} .

Modulo μ the formula A is quantifier-free. Recall (\mathcal{U}):

$$(\mathcal{U}): \begin{cases} \exists \mathcal{U}^2 \left(\ \forall X^1 \ \left(X \in \mathcal{U} \lor \overline{X} \in \mathcal{U} \right) \\ \land \forall X^1, Y^1 \ \left(X \cap Y \in \mathcal{U} \to Y \in \mathcal{U} \right) \\ \land \forall X^1, Y^1 \ \left(X, Y \in \mathcal{U} \to (X \cap Y) \in \mathcal{U} \right) \\ \land \forall X^1 \ \left(X \in \mathcal{U} \to \forall n \ \exists k > n \ (k \in X) \right) \\ \land \forall X^1 \ \left(\mathcal{U}(X) =_0 \operatorname{sg}(\mathcal{U}(X)) =_0 \mathcal{U}(\lambda n. \operatorname{sg}(X(n))) \right) \end{cases}$$

Modulo $\operatorname{RCA}_0^{\omega} + (\mu)$ this is of the form $\exists \mathcal{U}^2 \, \forall Z^1 \, (\mathcal{U})_{qf}(\mathcal{U}, Z)$. Thus

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \,\forall f^1 \,\exists Z^1 \,\exists g^1 \left((\mathcal{U})_{\mathsf{qf}}(\mathcal{U}, Z) \to \mathsf{A}_{\mathsf{qf}}(f, g) \right).$$

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \,\forall f^1 \,\exists Z^1 \,\exists g^1 \left((\mathcal{U})_{\mathsf{qf}}(\mathcal{U}, Z) \to \mathsf{A}_{\mathsf{qf}}(f, g) \right).$$

The functional interpretation extracts terms $t_Z, t_g \in T_0[\mu]$, such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \,\forall f^1\left((\mathcal{U})_{qf}(\mathcal{U}, t_Z(\mathcal{U}, f)) \to \mathsf{A}_{qf}(f, t_g(\mathcal{U}, f))\right).$$

Step 2: Term normalization

The terms t_Z, t_g are made of

- 0, successor, +, ·, λ -abstraction
- the primitive recursor R_0 , i.e.

$$R_0(0, y, f) = y,$$
 $R_0(x + 1, y, f) = f(R_0(x, y, f), x),$

• μ^2 and

• the parameters \mathcal{U}^2, f^1 .

With coding R_0 is of type 2. The functional \mathcal{U} is also of type 2. \implies no functional can take \mathcal{U} as parameter.

Lemma

The terms t_Z, t_g can be normalized, such that each occurrence of $\mathcal U$ is of the form

 $\mathcal{U}(t'(n^0))$ for a term t' possible containing \mathcal{U}, f .

Proof.

Consider $t[\mathcal{U}, f, n^0]$, where \mathcal{U}, f, n^0 are variables. Assume that all possible λ -reductions haven been carried out. Then one of the following holds:

•
$$t = 0$$
,
• $t = S(t'_1), t = f(t'_1), t = t'_1 + t'_2, t(n) = t'_1 \cdot t'_2$,
• $t = \mu(t'_g), t = \mathcal{U}(t'_g), t = R_0(t'_1, t'_2, t'_g)$.

Restart the procedure with t'_1 , t'_2 and $t'_a m^0$.

Step 3: Construction of (a substitute for) \mathcal{U}

We fix an f and construct a filter \mathcal{F} , such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash (\mathcal{U})_{qf}(\mathcal{F}, t_Z(\mathcal{F}, f)).$$
(*)

This yields then

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall f \mathsf{A}_{qf}(f, t_g(\mathcal{F}, f))$$

and thus the theorem.

Let t_1, \ldots, t_k be the list term with $\mathcal{U}(t_j(n))$ in t_Z, t_g .

- Assume that t_1, \ldots is ordered according to the subterm ordering.
- We start with the trivial filter $\mathcal{F}_0 = \{\mathbb{N}\}.$
- For each t_i we build a refined $\mathcal{F}_i \supseteq \mathcal{F}_{i-1}$ such that $(\mathcal{U})_{qf}$ relativized the sets coded by t_1, \ldots, t_i holds.
- $\mathcal{F} := \mathcal{F}_k$ solves then (*).

Step 3: Sketch of the construction of \mathcal{F}_1

Let $\mathcal{A} := \{A_1, A_2, \dots\}$ be the set of subsets of \mathbb{N} coded by t_1 . We assume that \mathcal{A} is closed under union, intersection and inverse.

We want a filter \mathcal{F}_1 , such that

•
$$\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \lor \overline{X} \in \mathcal{F}_1),$$

•
$$\forall X, Y \in \mathcal{A} \ (X \in \mathcal{F}_1 \land X \subseteq Y \to Y \in \mathcal{F}_1),$$

•
$$\forall X, Y \in \mathcal{A} \ (X, Y \in \mathcal{F}_1 \to X \cap Y \in \mathcal{F}_1),$$

•
$$\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \to X \text{ is infinite}).$$

Construction:

- We decide for each i = 1, 2, ... whether we put A_i or $\overline{A_i}$ into \mathcal{F}_1 .
- We put A_i into \mathcal{F}_1 if the *intersection of* A_i *with the previously chosen* sets is infinite. Otherwise we put $\overline{A_i}$ into \mathcal{F}_1 .

Program extraction

Corollary (to the proof)

If $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \mathsf{A}_{qf}(f,g) \text{ and } \mathsf{A}_{qf} \text{ does not contain } \mathcal{U}$ then one can extract a term $t \in T_0[\mu]$, such that

 $\mathsf{RCA}_0^\omega + (\mu) \vdash \mathsf{A}_{\!\!\textit{qf}}(f, t(f)).$

Corollary

If $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \mathsf{A}_{qf}(f,g)$ and A_{qf} does not contain \mathcal{U} then one can extract a term t in Gödel's System T, such that

 $A_{qf}(f, t(f))$

Proof.

- The previous corollary yields a term primitive recursive in μ.
- Interpreting the term using the bar recursor $B_{0,1}$ and then using Howard's ordinal analysis gives a term $t \in T$.

Idempotent ultrafilters

- The set of all ultrafilter on \mathbb{N} can be identified with the Stone-Čech compactification $\beta \mathbb{N}$ of \mathbb{N} .
- Addition + can be extended from \mathbb{N} to $\beta \mathbb{N}$:

$$X \in \mathcal{U} + \mathcal{V}$$
 iff $\{n \mid (X - n) \in \mathcal{V}\} \in \mathcal{U}$

Theorem (Ellis '58)

Every left-topological compact semi-group contains an idempotent.

Thus, there exists an *idempotent* ultrafilter, i.e. a \mathcal{U} with $\mathcal{U} + \mathcal{U} = \mathcal{U}$. Let (\mathcal{U}_{idem}) be the statement that an idempotent ultrafilter exists and IHT the so-called "iterated Hindman's Theorem".

Theorem (K.)

- $\mathsf{RCA}_0^\omega \vdash (\mathcal{U}_{idem}) \rightarrow \mathsf{IHT}$
- $ACA_0^{\omega} + (\mu) + IHT + (\mathcal{U}_{idem})$ is Π_2^1 -conservative over $ACA_0^{\omega} + IHT$.

Non-iterated uses of $\ensuremath{\mathcal{U}}$

Restrict the uses of \mathcal{U} to the form $\mathcal{U}(t_0)$, where t_0 does not contain \mathcal{U} . Goal: Show that restricted uses of Π_1^0 -CA suffices.

• Full Π_1^0 -CA:

$$\Pi^0_1\text{-}\mathsf{CA}\colon\;\forall f\,\exists g\,\forall n\,\left(g(n)=0\leftrightarrow\forall x\,f(n,x)=0\right).$$

• Instance of Π_1^0 -CA:

$$\Pi^0_1\operatorname{\mathsf{-CA}}({f\over f})\colon \ \exists g\,\forall n\,\,(g(n)=0\leftrightarrow \forall x\,f(n,x)=0)\,.$$

- $\mathsf{RCA}_0^\omega + \Pi_1^0 \text{-} \mathsf{CA} \vdash \Pi_\infty^0 \text{-} \mathsf{IA}$
- $\mathsf{RCA}_0^\omega + [\Pi_1^0 \mathsf{CA}(t) \text{ for all closed terms } t] \vdash \mathsf{light-face-}\Sigma_2^0 \mathsf{IA}$
- For closed terms t: RCA $_0^{\omega} + \Pi_1^0$ -CA $(t) \nvDash \Sigma_3^0$ -IA

Let $\mathsf{RCA}_0^{\omega^*}$ be RCA_0^{ω} where

- $\Sigma_1^0\text{-induction}$ is replaced by quantifier free induction,
- R_0 is replaced by the 2^x -function.

Then:

- $\mathsf{RCA}_0^{\omega*} + [\Pi_1^0 \mathsf{CA}(t) \text{ for all closed terms } t] \vdash \mathsf{light-face-}\Sigma_1^0 \mathsf{IA}$
- For closed terms $t:\ \mathsf{RCA}_0^{\omega*} + \Pi^0_1\text{-}\mathsf{CA}(t) \nvDash \Sigma^0_2\text{-}\mathsf{IA}$

Theorem (Elimination of monotone Skolem functions, Kohlenbach)

If
$$\mathsf{RCA}_0^{\omega^*} + \mathsf{WKL} \vdash \forall f (\Pi_1^0 - \mathsf{CA}(sf) \land \mathcal{U}(s'f) \to \exists x \mathsf{A}_0(f, x))$$

for a terms s, s' .

then one can extract a primitive recursive term t, such that

$$\mathsf{RCA}_0^{\omega} \vdash \forall f \mathsf{A}_0(f, tf).$$

Lemma

There is a term t, such that

$$\mathsf{RCA}_0^{\omega*} + \mathsf{WKL} \rightarrow \forall f \left(\Pi_1^0 - \mathsf{CA}(tf) \rightarrow \mathcal{U}(f) \right).$$

Possible Applications:

- Program extraction for ultralimit arguments e.g.,
 - from fixed point theory,
 - Gromov's Theorem,
 - Ergodic theory.
- Program extraction for non-standard arguments.

- The $\Pi^1_2\text{-}consequences of <math display="inline">\mathsf{RCA}_0^\omega+(\mathcal{U})$ and the $\Pi^1_2\text{-}consequences of <math display="inline">\mathsf{ACA}_0^\omega$ are the same.
- Program extraction for $RCA_0^{\omega} + (\mathcal{U})$.
- The Π^1_2 -consequences of $\mathsf{RCA}^\omega_0+(\mathcal{U}_{idem})$ and the Π^1_2 -consequences of $\mathsf{ACA}^\omega_0+\mathsf{IHT}$ are the same.
- Extraction of primitive recursive programs from $\mathsf{RCA}_0^\omega + \mathcal{U}(t)$.

Thank you for your attention!

Alexander P. Kreuzer

Non-principal ultrafilters, program extraction and higher order reverse mathematics

Journal of Mathematical Logic 12 (2012), no. 1.

Alexander P. Kreuzer

On idempotent ultrafilters in higher-order reverse mathematics preprint, arXiv:1208.1424.