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Functions of bounded variation

Definition
The variation of a function f : [0, 1]→ R is defined as follow.

V (f) := sup
0≤t1<···<tn≤1

n−1∑
i=1
|f(ti)− f(ti+1)|

where t1, . . . , tn ranges over the finite partitions of [0, 1].
f is a function of bounded variation if V (f) <∞.

Examples:
Characteristic functions of intervals
Continuously differentiable functions.

Non-example:

f(x) =
{

sin(1/x) x > 0,

0 x = 0.
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Functions of bounded variation

Definition
The variation of a function f : [0, 1]→ R is defined as follow.

V (f) := sup
0≤t1<···<tn≤1

n−1∑
i=1
|f(ti)− f(ti+1)|

where t1, . . . , tn ranges over the finite partitions of [0, 1].
f is a function of bounded variation if V (f) <∞.

There is a correspondence between
linear functional on C([0, 1]) and
functions of bounded variation via the
Riemann-Stieltjes. x
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Functions of bounded variation in computable analysis (so
far)

Let f be of bounded variation.

Fact
f has at most countably many points of discontinuity.
fl(x) := limy↗x f(y) is left-continuous, of bounded variation and
f(x) = fl(x) on all points of continuity.
f and fl induce the same linear functional on C([0, 1]).

Let xi be a dense set of points of continuity of f . Represent f by

〈(x1, f(x1)), (x2, f(x2)), . . . 〉

f can be recovered by left-continuous extension.
Successfully applied to give computable interpretation of Jordan
decomposition etc. (Weihrauch et. al.)



Functions of bounded variation in computable analysis (so
far)

Left-continuous functions of bounded variation do not form a space.
Not closed under taking limits.

Definition of bounded variation does not generalize to > 1 dimensions.



Sobolev spaces

The L1-norm is given by ‖f‖L1
:=
∫ 1

0 |f(x)| dx.
The space L1 is represented as sequences of rational polynomials
〈p1, . . . 〉 converging at 2−n in L1-norm.

The W 1,1-norm is given by ‖f‖W 1,1 := ‖f‖L1
+ ‖f ′‖L1

.
The derivative f ′ is taken in the sense of distributions.
The space W 1,1 is represented as sequences of rational polynomials
〈p1, . . . 〉 converging at 2−n in W 1,1-norm.

All f ∈W 1,1 have bounded variation since

V (f) = sup
0≤t1<···<tn≤1

n−1∑
i=1
|f(ti)− f(ti+1)| = sup

n−1∑
i=1

∣∣∣∣∫ ti+i

ti

f ′ dx

∣∣∣∣
≤ sup

n−1∑
i=1

∫ ti+i

ti

∣∣f ′∣∣ dx =
∫ 1

0

∣∣f ′∣∣ dx ≤ ‖f ′‖W 1,1

Characteristic functions of intervals do not belong to W 1,1

but have bounded variation.



The space BV

Want: A space BV with

L1 ⊇ BV ⊇W 1,1,

and variation-norm
‖f‖BV = ‖f‖L1 + V (f).

Problem
Such a space exists, but it is non-separable.

The family 1[0,x] with x ∈ R is of the size of the continuum and
has mutual distance ≥ 2.

Representation of non-separable spaces. (Brattka)
A point x is represented by

sequence converging to x (not necessarily at a given rate), and
norm v = ‖x‖, or a bounded v > ‖x‖.

We will use a hybrid approach.



The space BV

The function f ∈ BV is represent by 〈v, p1, p2, . . . 〉 where
〈p1, p2, . . . 〉 represent a function in L1,
v ∈ Q, and
‖p′i‖1 < v. (This implies V (pi) ≤ v.)

We will call v the bounded of variation of f .
Clear: L1 ⊇ BV ⊇W 1,1

Theorem
For each f : [0, 1]→ R of bounded variation the
L1-equivalence class of f is in BV .

Proof sketch

Approximated
a function of bounded variation f with
mollifications of f without increasing the
variation.



The space BV

The function f ∈ BV is represent by 〈v, p1, p2, . . . 〉 where
〈p1, p2, . . . 〉 represent a function in L1,
v ∈ Q, and
‖p′i‖1 < v. (This implies V (pi) ≤ v.)

We will call v the bounded of variation of f .
Clear: L1 ⊇ BV ⊇W 1,1

Theorem
For each f : [0, 1]→ R of bounded variation the
L1-equivalence class of f is in BV .

Theorem
For each f ∈ BV the equivalence class contains a function of bounded
variation.



Helly’s selection theorem

Theorem (Helly’s selection theorem, HST)
Let (fn)n ⊆ BV be a sequence of functions with bounds for variations vn.
If

1 ‖fn‖1 ≤ u for a u ∈ Q,
2 vn ≤ v for a v ∈ Q,

then there exists an f ∈ BV and a subsequence fg(n) such that
fg(n)

n→∞−−−→ f in L1 and the variation of f is bounded by v.

How difficult is it to compute f?



Proof of HST
mollifications better−−−→

f1 . . .

f2 . . .

...
...

... . . .
If each column of mollifications converges uniformly, then fi

converges in L1-norm.
Each column of mollifications is equicontinuous.

⇒ parallelization of Ascoli-Lemma (AA).
This reduction holds also computationally.
(Parallelization of) AA can be reduced to (a parallelization of) the
Bolzano-Weierstraß principle (BWT). (K. 12)
(Parallelization of) the BWT can be reduced to a single use of BWT.



Theorem
HST ≡W BWTR.
Over RCA0, HST is instance-wise equivalent to the
Bolzano-Weierstraß principle.

Analysis of Bolzano-Weierstraß principle in the Weihrauch lattice (Brattka,
Gherardi, Marcone ’12) and (K. ’11) for instances of Bolzano-Weierstraß
gives the following full classification of HST.

Corollary
HST ≡W WKL′

Over RCA0, HST is instance-wise equivalent to WKL for Σ0
1-trees.



Summary

Representation of functions of bounded variation Sobolev-like space.
Analyzed Helly’s selection theorem.

Thank you for your attention!
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