Program extraction and ultrafilters

Alexander P. Kreuzer

ENS Lyon

Logic Colloquium 2013 Special Session: Logical analysis of mathematical proofs

Program extraction for non-principal ultrafilters

- The logical systems and the functional interpretation
- Ultrafilters
- The results

2 The general concept

 \bullet Combinatorial $\Pi^1_2\text{-principles}$ and Ramsey's theorem for pairs

Higher order arithmetic

Definition (RCA $_0^{\omega}$, Recursive comprehension, Kohlenbach '05)

 RCA_0^ω is the finite type extension of RCA_0 :

- Sorted into type 0 for \mathbb{N} , type 1 for $\mathbb{N}^{\mathbb{N}}$, type 2 for $\mathbb{N}^{\mathbb{N}^{\mathbb{N}}}$, ...,
- contains basic arithmetic: 0, successor, +, \cdot , λ -abstraction,
- quantifier-free axiom of choice restricted to choice of numbers over functions (QF-AC^{1,0}), i.e.,

$$\forall f^1 \exists y^0 \operatorname{A}_{\operatorname{qf}}(f, y) \mathop{\rightarrow} \exists G^2 \forall f^1 \operatorname{A}_{\operatorname{qf}}(f, G(f))$$

• and a recursor R_0 , which provides primitive recursion (for numbers),

$$R_0(0, y^0, f) = y,$$
 $R_0(x+1, y, f) = f(R_0(x, y, f), x),$

• Σ_1^0 -induction.

The closed terms of RCA₀^{ω} will be denoted by T_0 . In Kohlenbach's books this system is denoted by $\widehat{\text{E-PA}}^{\omega} \upharpoonright + \text{QF-AC}^{1,0}$.

Theorem (Functional interpretation)

$$\mathsf{RCA}_0^\omega \vdash \forall x \, \exists y \, \mathsf{A}_{qf}(x, y)$$

the one can extract a term $t \in T_0$, such that

$$\mathsf{RCA}_0^\omega \vdash \forall x \, \mathsf{A}_{qf}(x, t(x)).$$

Sketch of proof.

Apply the following proof translations:

- Elimination of extensionality,
- a negative translation,
- Gödel's Dialectica translation.

See Kohlenbach: Applied Proof Theory.

Each formula can be assigned an equivalent $\forall \exists\mbox{-formula}.$ E.g.

$$A :\equiv \forall x \,\exists y \,\forall z \, A_{qf}(x, y, z)$$

will be assigned

$$A^{ND} \equiv \forall x \,\forall f_z \,\exists y \, A_{qf}(x, y, f_z(y)).$$

• This assignment preserves logical rules, like

$$\frac{A \qquad A \to B}{B},$$

and exhibits programs.

 Thus, to prove the program extraction theorem we only have to provide programs for the axioms.

Arithmetical comprehension

Let Π_1^0 -CA be the schema

$$\forall f \exists g \,\forall n \, \left(g(n) = 0 \leftrightarrow \forall x \, f(n, x) = 0\right).$$

Define ACA^{ω} to be RCA^{ω} + Π_1^0 -CA.

Let Feferman's μ be

$$\mu(f) := \begin{cases} \min\{x \mid f(x) = 0\} & \text{if } \exists x f(x) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Denote by (μ) be the statement that μ exists.

Theorem

- $\mathsf{RCA}_0^\omega + (\mu) \vdash \Pi_1^0 \text{-}\mathsf{CA}$
- $\mathsf{RCA}_0^\omega + (\mu)$ is $\Pi^1_2\text{-}conservative over <math display="inline">\mathsf{ACA}_0^\omega$

Theorem (Functional interpretation relative to μ)

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall x \,\exists y \,\mathsf{A}_{qf}(x, y)$$

the one can extract a term $t \in T_0[\mu]$, such that

lf

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall x \, \mathsf{A}_{qf}(x, t(x)).$$

We interpreted ACA₀^{ω} non-constructively using μ . One can also interpret ACA₀^{ω} directly using bar recursion. See Avigad, Feferman in Handbook of Proof Theory

Filter

Filter

A set $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ is a *filter over* \mathbb{N} if

•
$$\forall X, Y \ (X \in \mathcal{F} \land X \subseteq Y \to Y \in \mathcal{F}),$$

•
$$\forall X, Y \ (X, Y \in \mathcal{F} \rightarrow X \cap Y \in \mathcal{F}),$$

•
$$\emptyset \notin \mathcal{F}$$

Ultrafilter

A filter \mathcal{F} is an *ultrafilter* if it is maximal, i.e., $\forall X \ \left(X \in \mathcal{F} \lor \overline{X} \in \mathcal{F}\right)$

 $\mathcal{P}_n := \{X \subseteq \mathbb{N} \mid n \in X\}$ is an ultrafilter. These filters are called *principal*. The Fréchet filter $\{X \subseteq \mathbb{N} \mid X \text{ cofinite}\}$ is a filter but not an ultrafilter.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if • $\forall X \ (X \in \mathcal{U} \lor \overline{X} \in \mathcal{U}),$ • $\forall X, Y \ (X \in \mathcal{U} \land X \subseteq Y \to Y \in \mathcal{U}),$ • $\forall X, Y \ (X, Y \in \mathcal{U} \to X \cap Y \in \mathcal{U}),$ • $\forall X \ (X \in \mathcal{U} \to X \text{ is infinite}).$

The existence of a non-principal ultrafilter is not provable in ZF.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if • $\forall X \ (X \in \mathcal{U} \lor \overline{X} \in \mathcal{U}),$ • $\forall X, Y \ (X \in \mathcal{U} \land X \subseteq Y \to Y \in \mathcal{U}),$ • $\forall X, Y \ (X, Y \in \mathcal{U} \to X \cap Y \in \mathcal{U}),$ • $\forall X \ (X \in \mathcal{U} \to X \text{ is infinite}).$

Coding sets as characteristic function, i.e, $n \in X :\equiv [X(n) = 0]$, this can be formulated in RCA_0^{ω} :

$$(\mathcal{U}): \begin{cases} \exists \mathcal{U}^2 \left(\ \forall X^1 \ \left(X \in \mathcal{U} \lor \overline{X} \in \mathcal{U} \right) \\ \land \forall X^1, Y^1 \ \left(X \cap Y \in \mathcal{U} \to Y \in \mathcal{U} \right) \\ \land \forall X^1, Y^1 \ \left(X, Y \in \mathcal{U} \to (X \cap Y) \in \mathcal{U} \right) \\ \land \forall X^1 \ \left(X \in \mathcal{U} \to \forall n \ \exists k > n \ (k \in X) \right) \\ \land \forall X^1 \ \left(\mathcal{U}(X) =_0 \operatorname{sg}(\mathcal{U}(X)) =_0 \mathcal{U}(\lambda n. \operatorname{sg}(X(n))) \right) \end{cases}$$

Lower bound on the strength of $\mathsf{RCA}_0^\omega + (\mathcal{U})$

Theorem (K.)

$$\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash (\mu)$$

In particular, $\mathsf{RCA}_0^\omega + (\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let
$$f \colon \mathbb{N} \to \mathbb{N}$$
 and set $X_f := \{n \mid \exists m \leq n \ f(m) = 0\}$. Then

$$\exists n \ (f(n) = 0) \iff X_f \text{ is cofinite} \\ \iff X_f \in \mathcal{U}$$

Thus

$$\forall f (X_f \in \mathcal{U} \to \exists n (f(n) = 0 \land \forall n' < n f(n) \neq 0))$$

QF-AC^{1,0} yields a functional satisfying (μ) .

Upper bound on the strength of $\mathsf{RCA}_0^\omega + (\mathcal{U})$

Theorem (K.)

 $\mathsf{RCA}_0^\omega + (\mathcal{U}) \text{ is } \Pi_2^1 \text{-conservative over } \mathsf{RCA}_0^\omega + (\mu) \text{ and thus also over } \mathsf{ACA}_0^\omega.$

Proof sketch

Suppose $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \mathsf{A}(f,g)$ and A does not contain \mathcal{U} .

() The functional interpretation yields a term $t \in T_0[\mu]$, such that

 $\forall f \mathsf{A}(f, t(\mathcal{U}, f)).$

2 Normalizing t, such that each occurrence of \mathcal{U} in t is of the form

 $\mathcal{U}(t'(n^0))$ for a term $t'(n^0) \in T_0[\mathcal{U}, \mu, f].$

In particular, U is only used on countably many sets (for each fixed f). Build in RCA₀^{ω} + (μ) a filter which acts on these sets as ultrafilter.

Step 1: Functional interpretation

Suppose $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f^1 \exists g^1 \mathsf{A}(f,g)$ where A is arithmetical and does not contain \mathcal{U} .

Modulo μ the formula A is quantifier-free. Recall (\mathcal{U}):

$$(\mathcal{U}): \begin{cases} \exists \mathcal{U}^2 \left(\ \forall X^1 \ \left(X \in \mathcal{U} \lor \overline{X} \in \mathcal{U} \right) \\ \land \forall X^1, Y^1 \ \left(X \cap Y \in \mathcal{U} \to Y \in \mathcal{U} \right) \\ \land \forall X^1, Y^1 \ \left(X, Y \in \mathcal{U} \to (X \cap Y) \in \mathcal{U} \right) \\ \land \forall X^1 \ \left(X \in \mathcal{U} \to \forall n \ \exists k > n \ (k \in X) \right) \\ \land \forall X^1 \ \left(\mathcal{U}(X) =_0 \operatorname{sg}(\mathcal{U}(X)) =_0 \mathcal{U}(\lambda n. \operatorname{sg}(X(n))) \right) \end{cases}$$

Modulo $\operatorname{RCA}_0^{\omega} + (\mu)$ this is of the form $\exists \mathcal{U}^2 \, \forall Z^1 \, (\mathcal{U})_{qf}(\mathcal{U}, Z)$. Thus

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \,\forall f^1 \,\exists Z^1 \,\exists g^1 \left((\mathcal{U})_{\mathsf{qf}}(\mathcal{U}, Z) \to \mathsf{A}_{\mathsf{qf}}(f, g) \right).$$

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \,\forall f^1 \,\exists Z^1 \,\exists g^1 \left((\mathcal{U})_{\mathsf{qf}}(\mathcal{U}, Z) \to \mathsf{A}_{\mathsf{qf}}(f, g) \right).$$

The functional interpretation extracts terms $t_Z, t_g \in T_0[\mu]$, such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \,\forall f^1\left((\mathcal{U})_{qf}(\mathcal{U}, t_Z(\mathcal{U}, f)) \to \mathsf{A}_{qf}(f, t_g(\mathcal{U}, f))\right).$$

Step 2: Term normalization

The terms t_Z, t_g are made of

- 0, successor, +, ·, λ -abstraction
- the primitive recursor R_0 , i.e.

$$R_0(0, y, f) = y,$$
 $R_0(x + 1, y, f) = f(R_0(x, y, f), x),$

• μ^2 and

• the parameters \mathcal{U}^2, f^1 .

With coding R_0 is of type 2. The functional \mathcal{U} is also of type 2. \implies no functional can take \mathcal{U} as parameter.

Lemma

The terms t_Z, t_g can be normalized, such that each occurrence of $\mathcal U$ is of the form

 $\mathcal{U}(t'(n^0))$ for a term t' possible containing \mathcal{U}, f .

Proof.

Consider $t[\mathcal{U}, f, n^0]$, where \mathcal{U}, f, n^0 are variables. Assume that all possible λ -reductions haven been carried out. Then one of the following holds:

•
$$t = 0$$
,
• $t = S(t'_1), t = f(t'_1), t = t'_1 + t'_2, t(n) = t'_1 \cdot t'_2$,
• $t = \mu(t'_g), t = \mathcal{U}(t'_g), t = R_0(t'_1, t'_2, t'_g)$.

Restart the procedure with t'_1 , t'_2 and $t'_a m^0$.

Step 3: Construction of (a substitute for) \mathcal{U}

We fix an f and construct a filter \mathcal{F} , such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash (\mathcal{U})_{qf}(\mathcal{F}, t_Z(\mathcal{F}, f)).$$
(*)

This yields then

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall f \, \mathsf{A}_{qf}(f, t_g(\mathcal{F}, f))$$

and thus the theorem.

Let t_1, \ldots, t_k be the list term with $\mathcal{U}(t_j(n))$ in t_Z, t_g .

- Assume that t_1, \ldots is ordered according to the subterm ordering.
- We start with the trivial filter $\mathcal{F}_0 = \{\mathbb{N}\}.$
- For each t_i we build a refined $\mathcal{F}_i \supseteq \mathcal{F}_{i-1}$ such that $(\mathcal{U})_{qf}$ relativized the sets coded by t_1, \ldots, t_i holds.
- $\mathcal{F} := \mathcal{F}_k$ solves then (*).

Step 3: Sketch of the construction of \mathcal{F}_1

Let $\mathcal{A} := \{A_1, A_2, \dots\}$ be the set of subsets of \mathbb{N} coded by t_1 . We assume that \mathcal{A} is closed under union, intersection and inverse.

We want a filter \mathcal{F}_1 , such that

•
$$\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \lor \overline{X} \in \mathcal{F}_1),$$

•
$$\forall X, Y \in \mathcal{A} \ (X \in \mathcal{F}_1 \land X \subseteq Y \to Y \in \mathcal{F}_1),$$

•
$$\forall X, Y \in \mathcal{A} \ (X, Y \in \mathcal{F}_1 \to X \cap Y \in \mathcal{F}_1),$$

•
$$\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \to X \text{ is infinite}).$$

Construction:

- We decide for each i = 1, 2, ... whether we put A_i or $\overline{A_i}$ into \mathcal{F}_1 .
- We put A_i into \mathcal{F}_1 if the *intersection of* A_i *with the previously chosen* sets is infinite. Otherwise we put $\overline{A_i}$ into \mathcal{F}_1 .

Program extraction

Corollary (to the proof)

If $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \mathsf{A}_{qf}(f,g) \text{ and } \mathsf{A}_{qf} \text{ does not contain } \mathcal{U}$ then one can extract a term $t \in T_0[\mu]$, such that

 $\mathsf{RCA}_0^\omega + (\mu) \vdash \mathsf{A}_{\!\!\textit{qf}}(f, t(f)).$

Corollary

If $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \mathsf{A}_{qf}(f,g)$ and A_{qf} does not contain \mathcal{U} then one can extract a term t in Gödel's System T, such that

 $A_{qf}(f, t(f))$

Proof.

- The previous corollary yields a term primitive recursive in μ.
- Interpreting the term using the bar recursor $B_{0,1}$ and then using Howard's ordinal analysis gives a term $t \in T$.

The general concept

The proof theory

- Functional interpretation (Step 1)
- Term normalization (Step 2)

Extension to <u>abstract types</u> (Günzel, ongoing work).

The combinatorics

Construction of the partial ultrafilter on the countable algebra. (Step 3)

Extension to

- idempotent ultrafilters by using iterated Hindman's theorem (K. '12),
- minimal idempotent ultrafilters by using a refinement of the Auslander-Ellis theorem (K. '13),
- possibly other type 2 operators.

Combinatorial Π^1_2 -Principles are principles of the form

 $\forall f \, \exists g \, \mathsf{A}_{\mathrm{ar}}(f,g)$

where $A_{ar}(f,g)$ is arithmetical.

We will restrict our attention to principles of this form

 $\forall f \exists g \,\forall x \,\mathsf{A}_{qf}(f,g,x).$

Example

Ramsey's theorem for pairs (RT_2^2)

The functional interpretation applied to P yields the following.

$$\begin{aligned} &\forall f^1 & \exists g^1 \,\forall x^0 \, \mathsf{A}_{\mathsf{qf}}(f,g,x) \\ &\forall f^1 \,\forall X^2 \, \exists g^1 & \mathsf{A}_{\mathsf{qf}}(f,g,Xg) \\ &\exists \mathcal{G}^3 \,\forall f^1 \,\forall X^2 & \mathsf{A}_{\mathsf{qf}}(f,\mathcal{G}fX,X(\mathcal{G}fX)) \end{aligned}$$

 \mathcal{G} is called the solution functional to the principle P. Note that this functional is of type 3.

Theorem (Functional interpretation)

lf

 $\mathsf{RCA}_0^\omega + (P) \vdash \forall x \exists y \mathsf{A}_{qf}(x, y)$

the one can extract a term $t \in T_0[\mathcal{G}]$, such that

 $\mathsf{RCA}_0^\omega \vdash \forall x \, \mathsf{A}_{qf}(x, t(x)).$

- After normalization every occurrence of \mathcal{G} in t is of the form $\mathcal{G}(t_1[h^1], t_2[h^1])$. The parameter h is of type 1 because \mathcal{G} is of type 3 and not 2.
- Roughly, only finitely many nested applications of (P) relative to the fixed parameter h^1 are used.

Theorem (Cholak, Jockusch, Slaman '01)

 $\mathsf{RCA}_0 + \Sigma_2^0 \text{-}\mathsf{IA} + \mathsf{RT}_2^2 \text{ is } \Pi_1^1 \text{-}\textit{conservative over } \mathsf{RCA}_0 + \Sigma_2^0 \text{-}\mathsf{IA}.$

Theorem (Chong, Slaman, Yang '13)

 $\mathsf{RCA}_0 + \mathsf{RT}_2^2 \nvDash \Sigma_2^0 \text{-}\mathsf{IA}.$

• Full Π_1^0 -CA:

 $\Pi_1^0\text{-}\mathsf{CA}\colon \ \forall f\,\exists X\,\forall k\,\,(k\in X\leftrightarrow\forall n\,f(k,n)\neq 0)\,.$

• Instance of Π_1^0 -CA:

 $\Pi^0_1\operatorname{-CA}({\boldsymbol{f}})\colon\ \exists X\,\forall k\,\,(k\in X\leftrightarrow \forall n\,f(k,n)\neq 0)\,.$

• For all f there exists an f', such that uniform WKL_0 proves

 $\forall c \text{ coloring } \left(\Pi_1^0 \text{-} \mathsf{CA}(f'(c)) \right)$

 $\rightarrow \exists H (H \text{ solves } \mathsf{RT}_2^2 \text{ for } c \land \Pi_1^0 \text{-}\mathsf{CA}(f(c,H))))$

- Single non-iterated instances of Π_1^0 -CA suffices to interpret nested applications of RT_2^2 (relative to roughly RCA₀ plus weak König's lemma).
- Single non-iterated use of the bar recursor $B_{0,1}$ suffices to interpret the term t.

This is based on CJS '01 but not on the forcing construction to prove the above theorem.

We called this property proofwise low.

Theorem (K., Kohlenbach '12)

If $\mathsf{WKL}_0^\omega + \Sigma_2^0 - \mathsf{IA} + \mathsf{RT}_2^2 \vdash \forall x^1 \exists y^0 \mathsf{A}_{qf}(x, y)$ then one can extract a term $t \in T_1$ (provably total in $\Sigma_2^0 - \mathsf{IA}$) with

 $A_{qf}(x,tx).$

Similar program extraction results hold for

• Choesive principle (COH), ascending-descending ADS, (K. '12) chain-antichain principle (CAC),

- Program extraction and conservativity for non-principal ultrafilters.
 - The $\Pi^1_2\text{-consequences of RCA}^\omega_0+(\mathcal{U})$ and the $\Pi^1_2\text{-consequences of ACA}^\omega_0$ are the same.
- Other use of the combination of functional interpretation and term normalization.
 - Combinatorial $\Pi^1_2\text{-principles}$ and $\mathsf{RT}^2_2.$

Thank you for your attention!

Alexander P. Kreuzer

Non-principal ultrafilters, program extraction and higher order reverse mathematics

J. Mathematical Logic 12 (2012), no. 1.

Alexander P. Kreuzer

On idempotent ultrafilters in higher-order reverse mathematics preprint, arXiv:1208.1424.

Alexander P. Kreuzer

Minimal idempotent ultrafilters and the Auslander-Ellis theorem preprint, arXiv:1305.6530.

Peter Cholak, Carl Jockusch, and Theodore Slaman On the strength of Ramsey's theorem for pairs J. of Symbolic Logic 66 (2001), 1–55.

Alexander P. Kreuzer and Ulrich Kohlenbach *Term extraction and Ramsey's theorem for pairs* J. Symbolic Logic **77** (2012), no. 3, pp. 853–895.

Alexander P. Kreuzer *Primitive recursion and the chain antichain principle* Notre Dame J. Formal Logic, **53** (2012), no. 2, 245–265.

Alexander P. Kreuzer *Program extraction for 2-random reals* Archive for Mathematical Logic, **52** (2013), no. 5–6, 659–666.