On the Uniform Computational Content of the Baire Category Theorem

Alexander P. Kreuzer

joint work with Vasco Brattka and Matthew Hendtlass

National University of Singapore

Dagstuhl Seminar 15392, September 2015

Let X be a complete metric space.

Theorem (Baire category theorem) Let $(A_n)_{n \in \mathbb{N}}$ be closed nowhere dense subsets of X. $\bigcup_{n \in \mathbb{N}} A_n \subsetneq X$ \bullet negative information, $\mathcal{A}_{-}(X)\text{, }\phi_{-}\text{,}$

 \boldsymbol{A} is the complement of an open set given as an enumeration of basic open balls

- positive information, $\mathcal{A}_+(X)$, ϕ_+ , A is the closure of an enumeration of points in X.
- set of cluster points, $\mathcal{A}_*(X)$, ϕ_* ,

A is the set of cluster points of an enumeration of points in X.

Example: Closed Choice

Let X metric space.

Definition

$$\mathsf{C}_X :\subseteq \mathcal{A}_{\square}(X) \rightrightarrows X$$
$$A \mapsto A$$

- positive information $(\Box = +)$, C_X is trivial.
- set of cluster points (□ = *),
 C_X is the same as finding a cluster point (similar as Bolzano-Weierstraß theorem)
- negative information (□ = −), right formulation, non-continuous.

Baire category theorem

Let X be a complete metric space.

Theorem (Baire category theorem)

Let $(A_n)_{n \in \mathbb{N}}$ be closed nowhere dense subsets of X.

$$\bigcup_{n \in \mathbb{N}} A_n \subsetneq X$$

Formulate as computational problem:

 $\begin{array}{l} \mathsf{BCT}_0 \ \ \mathsf{Given} \ (A_n)_{n \in \mathbb{N}} \ \mathsf{closed} \ \mathsf{nowhere \ dense.} \ \ \mathsf{There \ is \ an} \\ x \in X \setminus \bigcup_{n \in \mathbb{N}} A_n. \\ \mathsf{BCT}_0 :\subseteq \mathcal{A}_-(X)^{\mathbb{N}} \rightrightarrows X \end{array}$

BCT₁ Given $(A_n)_{n \in \mathbb{N}}$ closed, such that $\bigcup_{n \in \mathbb{N}} A_n = X$. There is an index n such that A_n is somewhere dense.

 $\mathsf{BCT}_1:\subseteq \mathcal{A}_-(X)^{\mathbb{N}} \rightrightarrows \mathbb{N}$

 BCT_2 , BCT_3 are defined like BCT_0 and BCT_1 but with positive input.

		classical reverse mathematics	
BCT ₀	computable	RCA ₀	
BCT_1	equivalent to $C_{\mathbb{N}}$ implies Banach inverse mapping theorem, etc.	RCA ₀	
BCT_2	computability theoretic version related to 1-generic, forcing, BCT//	$\Pi^0_1 G$	
BCT_3	equivalent to cluster point problem	$\Pi^0_1 G$	
Space $\stackrel{^{}}{X}$ has to be perfect (no isolated points.) E.g., $2^{\stackrel{^{}}{\mathbb{N}}}$, $\mathbb{N}^{\mathbb{N}}$.			

In classical reverse mathematics (Brown, Simpson '93) $RCA_0 + BCTII \vdash$ "Banach inverse mapping theorem".

If X has isolated points.

Proposition			
	$BCT_2 \equiv_{sW} \mathit{id}_0$	$BCT_3 \equiv_{sW} \mathit{id}_{\mathbb{N}}$	

In particular, BCT_2 , BCT_3 are computable in this case.

Theorem (Brattka, Hendtlass, K.)

 BCT_i for a perfect polish space X is sW-equivalent to BCT_i for $\mathbb{N}^{\mathbb{N}}$.

Proof.

- BCT_i for X is reducible to BCT_i for $\mathbb{N}^{\mathbb{N}}$:
 - Let $\delta \colon \mathbb{N}^{\mathbb{N}} \to X$ be the Cauchy representation.
 - Take $\delta \mathsf{BCT}_i(\delta^{-1}(A_n))$.
- BCT_i for $2^{\mathbb{N}}$ is reducible to BCT_i for X:
 - By perfectness there is an embedding
 - $\iota: 2^{\mathbb{N}} \to X$ with computable inverse. (Brattka, Gheradi '08)
 - $A \subseteq 2^{\mathbb{N}}$ nowhere dense $\Rightarrow \iota(A)$ nowhere dense.
 - Take $\iota^{-1}(\mathsf{BCT}_i((\iota(A_n))_n)))$.
- BCT_i for $\mathbb{N}^{\mathbb{N}}$ is reducible to BCT_i for $2^{\mathbb{N}}$:
 - Embed $\mathbb{N}^{\mathbb{N}}$ into $2^{\mathbb{N}}$ via $p \mapsto 1^{p(0)} 0 1^{p(1)} 0 1^{p(2)} 0 \cdots$.
 - Range is (c.e.) comeager.

Consider now only $X = \mathbb{N}^{\mathbb{N}}$.

Theorem (Brattka '01, Brattka, Gherardi '11)

•
$$C_{\mathbb{N}} \equiv_{\mathsf{sW}} \mathsf{BCT}_{1}$$

•
$$\mathsf{CL}_{\mathbb{N}} \equiv_{\mathsf{sW}} \mathsf{BCT}_3 \equiv_{\mathsf{sW}} \mathsf{BCT}_1'$$

Theorem (Brattka, Hendtlass, K.)

 BCT₀, BCT₂ are densely realized. In particular C₂ ≰_W BCT₀, BCT₂.

• $\mathsf{BCT}_0' \equiv_{\mathsf{sW}} \mathsf{BCT}_2$.

Proof of $\mathsf{BCT}_2 \equiv_{\mathsf{sW}} \mathsf{BCT}_0'$ and $\mathsf{BCT}_3 \equiv_{\mathsf{sW}} \mathsf{BCT}_1'$

Proposition

 $id_{+-} \colon \mathcal{A}_+(X) \to \mathcal{A}_-(X) \leq_{\mathsf{sW}} \lim$

Gives $\mathsf{BCT}_2 = \mathsf{BCT}_0 \circ \mathrm{id}_{+-} \leq_{\mathsf{sW}} \mathsf{BCT}'_0$ and $\mathsf{BCT}_3 \leq_{\mathsf{sW}} \mathsf{BCT}'_1$.

Proposition (Brattka, Gherardi, Marcone '12)

 $id: \mathcal{A}_*(X) \to \mathcal{A}_-(X)'$ is a computable isomorphism.

Proposition

There is an $M :\subseteq \mathcal{A}_*(X) \rightrightarrows \mathcal{A}_+(X)$ such that,

- $M(A) \subseteq \{B \colon A \subseteq B\}$
- A nowhere dense $\Rightarrow B \in M(A)$ nowhere dense. (X perfect)

The mapping

$$\mathcal{A}_{-}(X)' \xrightarrow{id} \mathcal{A}_{*}(X) \xrightarrow{M} \mathcal{A}_{+}(X)$$

gives $\mathsf{BCT}'_0 \leq_{\mathsf{sW}} \mathsf{BCT}_2$ and $\mathsf{BCT}'_1 \leq_{\mathsf{sW}} \mathsf{BCT}_3$.

1-generic

A point $p \in 2^{\mathbb{N}}$ is 1-generic relative to q if it meets or avoids any c.e. open set U_i^q , i.e.,

$$\exists w \sqsubseteq p \ \left(w2^{\mathbb{N}} \subseteq U_i^q \text{ or } w2^{\mathbb{N}} \cap U_i^q = \emptyset\right).$$

Equivalently: $p \notin \partial U_i^q$

Theorem

 $\mathsf{BCT}_0 \leq_{\mathsf{sW}} 1\text{-}\mathsf{GEN} \leq_{\mathsf{sW}} \mathsf{BCT}_2$

Proof.

• For nowhere dense A, $A = \partial A = \partial A^c$.

$$\mathsf{BCT}_0((A_i)_i) = 2^{\mathbb{N}} \setminus \bigcup_{i=0}^{\infty} A_i = \bigcap_{i=0}^{\infty} (2^{\mathbb{N}} \setminus \partial A_i^c)$$

Now $A_i^c = U_j^q$ for a suitable j. Thus, BCT₀ \leq_{sW} 1-GEN. 2 Use BCT₂ \equiv_{sW} BCT₀ and compute ∂U_i^q in the limit.

1-generic (cont.)

Theorem

 $BCT_0 <_{sW} 1$ -GEN $<_{sW} BCT_2$ (The implications are strict.)

Proof sketch.

- Sufficient to use a weakly 1-generic in the previous proof. Apply the fact that there are weakly 1-generics that are not 1-generic. $BCT_0 \leq_{sW} 1$ -weakGEN $<_{sW} 1$ -GEN.
- **2** (Uniform) Theorem of Kurtz shows that 1-GEN \leq_{sW} WWKL'.^a

Lemma of Kučera shows that WWKL' can be realized such that its output is low for $\Omega.$

There is a computable p such that $BCT_2(p)$ is not low for Ω .

Thus, $BCT_2 \not\leq_W WWKL'$.

^aActually, (1 - *)-WWKL'

Definition (Π_1^0 G, classical reverse math)

Let $D_i \subseteq 2^{<\mathbb{N}}$ be a sequence of dense, uniformly Π_1^0 -set. There is a set $G \subseteq 2^{\mathbb{N}}$ meeting each D_i , i.e., $\exists s \in D_i (s \sqsubseteq G)$.

 $\Pi^0_1 {\rm G}$ related to forcing constructions. Formulation in the Weihrauch lattice: Model properties of D_i using a suitable representation.

Definition

$$\phi_{\#}(p) = A : \iff \phi_{-}(p) = D \text{ and } A = 2^{\mathbb{N}} \setminus \bigcup_{w \in D} w 2^{\mathbb{N}},$$

where $D \subseteq 2^{<\mathbb{N}}$.

Definition (Π_1^0 G, Weihrauch version)

$$\Pi_1^0 \mathsf{G} :\subseteq \mathcal{A}_{\#}(2^{\mathbb{N}})^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}} \qquad (A_n)_n \mapsto \bigcap 2^{\mathbb{N}} \setminus A_n,$$

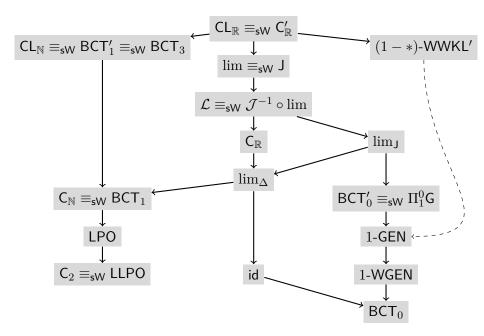
with dom(Π_1^0 G) := { $(A_i)_i \mid A_i^\circ = \emptyset$ }.

Proposition

 $\mathrm{id} \colon \mathcal{A}_{-}(2^{\mathbb{N}})' \to \mathcal{A}_{\#}(2^{\mathbb{N}}) \text{ is a computable isomorphism}.$

Corollary

 $\Pi_1^0 \mathsf{G} \equiv_{\mathsf{sW}} \mathsf{BCT}_0' \equiv_{\mathsf{sW}} \mathsf{BCT}_2$



- Different ways of writing Baire category theorem as forall-exists statement are natural.
- Basically 2 different variants.
- Calculus characterization of $\Pi_1^0 G$.

Thank you for your attention!

V. Brattka, M. Hendtlass, A. Kreuzer On the Uniform Computational Content of Baire Category Theorem

V. Brattka, M. Hendtlass, A. Kreuzer, On the Uniform Computational Content of Computability Theory arXiv:1501.00433