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Baire category theorem

Let X be a complete metric space.

Theorem (Baire category theorem)
Let (An)n∈N be closed nowhere dense subsets of X.⋃

n∈N
An ( X



Representation of closed sets

negative information, A−(X), φ−,
A is the complement of an open set given as an enumeration of basic
open balls
positive information, A+(X), φ+,
A is the closure of an enumeration of points in X.
set of cluster points, A∗(X), φ∗,
A is the set of cluster points of an enumeration of points in X.



Example: Closed Choice

Let X metric space.

Definition

CX :⊆A�(X) ⇒ X

A 7→ A

positive information (� = +),
CX is trivial.
set of cluster points (� = ∗),
CX is the same as finding a cluster point (similar as
Bolzano-Weierstraß theorem)
negative information (� = −),
right formulation, non-continuous.



Baire category theorem

Let X be a complete metric space.

Theorem (Baire category theorem)
Let (An)n∈N be closed nowhere dense subsets of X.⋃

n∈N
An ( X

Formulate as computational problem:
BCT0 Given (An)n∈N closed nowhere dense. There is an

x ∈ X \
⋃

n∈NAn.
BCT0 :⊆ A−(X)N ⇒ X

BCT1 Given (An)n∈N closed, such that
⋃

n∈NAn = X. There is an
index n such that An is somewhere dense.
BCT1 :⊆ A−(X)N ⇒ N

BCT2, BCT3 are defined like BCT0 and BCT1 but with positive input.



Overview over the strength of BCT

classical reverse
mathematics

BCT0 computable RCA0

BCT1
equivalent to CN
implies Banach inverse mapping theorem, etc. RCA0

BCT2
computability theoretic version
related to 1-generic, forcing, BCTII Π0

1G

BCT3 equivalent to cluster point problem Π0
1G

Space X has to be perfect (no isolated points.) E.g., 2N, NN.

In classical reverse mathematics (Brown, Simpson ’93)
RCA0 + BCTII ` “Banach inverse mapping theorem”.



BCT on non-perfect space X

If X has isolated points.

Proposition
BCT2 ≡sW id0 BCT3 ≡sW idN

In particular, BCT2, BCT3 are computable in this case.



BCT on perfect spaces

Theorem (Brattka, Hendtlass, K.)
BCTi for a perfect polish space X is sW-equivalent to BCTi for NN.

Proof.
BCTi for X is reducible to BCTi for NN:

Let δ : NN → X be the Cauchy representation.
Take δBCTi(δ−1(An)).

BCTi for 2N is reducible to BCTi for X:
By perfectness there is an embedding
ι : 2N → X with computable inverse. (Brattka, Gheradi ’08)
A ⊆ 2N nowhere dense ⇒ ι(A) nowhere dense.
Take ι−1(BCTi((ι(An))n)).

BCTi for NN is reducible to BCTi for 2N:
Embed NN into 2N via p 7→ 1p(0)01p(1)01p(2)0 · · · .
Range is (c.e.) comeager.

Consider now only X = NN.



Theorem (Brattka ’01, Brattka, Gherardi ’11)
CN ≡sW BCT1,
CLN ≡sW BCT3 ≡sW BCT′1.

Theorem (Brattka, Hendtlass, K.)
BCT0, BCT2 are densely realized.
In particular C2 �W BCT0,BCT2.
BCT′0 ≡sW BCT2.



Proof of BCT2 ≡sW BCT′0 and BCT3 ≡sW BCT′1

Proposition
id+− : A+(X)→ A−(X) ≤sW lim

Gives BCT2 = BCT0 ◦ id+− ≤sW BCT′0 and BCT3 ≤sW BCT′1.

Proposition (Brattka, Gherardi, Marcone ’12)
id : A∗(X)→ A−(X)′ is a computable isomorphism.

Proposition
There is an M :⊆ A∗(X) ⇒ A+(X) such that,

M(A) ⊆ {B : A ⊆ B}
A nowhere dense ⇒ B ∈M(A) nowhere dense. (X perfect)

The mapping
A−(X)′ id−→ A∗(X) M−→ A+(X)

gives BCT′0 ≤sW BCT2 and BCT′1 ≤sW BCT3.



1-generic

A point p ∈ 2N is 1-generic relative to q if it meets or avoids any c.e. open
set U q

i , i.e.,
∃w v p

(
w2N ⊆ U q

i or w2N ∩ U q
i = ∅

)
.

Equivalently: p /∈ ∂U q
i

Theorem
BCT0 ≤sW 1-GEN ≤sW BCT2

Proof.
1 For nowhere dense A, A = ∂A = ∂Ac.

BCT0((Ai)i) = 2N \
⋃∞

i=0
Ai =

⋂∞
i=0

(2N \ ∂Ac
i )

Now Ac
i = U q

j for a suitable j. Thus, BCT0 ≤sW 1-GEN.
2 Use BCT2 ≡sW BCT′0 and compute ∂U q

i in the limit.



1-generic (cont.)

Theorem
BCT0 <sW 1-GEN <sW BCT2
(The implications are strict.)

Proof sketch.
1 Sufficient to use a weakly 1-generic in the previous proof.

Apply the fact that there are weakly 1-generics that are not 1-generic.
BCT0 ≤sW 1-weakGEN <sW 1-GEN.

2 (Uniform) Theorem of Kurtz shows that 1-GEN ≤sW WWKL′.a

Lemma of Kučera shows that WWKL′ can be realized such that its
output is low for Ω.
There is a computable p such that BCT2(p) is not low for Ω.
Thus, BCT2 �W WWKL′.

aActually, (1 − ∗)-WWKL′



Π0
1G

Definition (Π0
1G, classical reverse math)

Let Di ⊆ 2<N be a sequence of dense, uniformly Π0
1-set.

There is a set G ⊆ 2N meeting each Di, i.e., ∃s ∈ Di (s v G).

Π0
1G related to forcing constructions.

Formulation in the Weihrauch lattice: Model properties of Di using a
suitable representation.

Definition
φ#(p) = A :⇐⇒ φ−(p) = D and A = 2N \

⋃
w∈D w2N,

where D ⊆ 2<N.

Definition (Π0
1G, Weihrauch version)

Π0
1G :⊆ A#(2N)N ⇒ 2N (An)n 7→

⋂
2N \An,

with dom(Π0
1G) := {(Ai)i | A◦i = ∅}.



Π0
1G (cont.)

Proposition
id : A−(2N)′ → A#(2N) is a computable isomorphism.

Corollary
Π0

1G ≡sW BCT′0 ≡sW BCT2



CLR ≡sW C′R
CLN ≡sW BCT′1 ≡sW BCT3

lim ≡sW J

limJ

lim∆

L ≡sW J −1 ◦ lim

CR

(1− ∗)-WWKL′

1-GEN

1-WGEN

BCT0

BCT′0 ≡sW Π0
1GCN ≡sW BCT1

LPO

C2 ≡sW LLPO id



Summary

Different ways of writing Baire category theorem as forall-exists
statement are natural.
Basically 2 different variants.
Calculus characterization of Π0

1G.



Thank you for your attention!
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