The Bolzano-Weierstraß principle and the cohesive principle

Alexander P. Kreuzer

Technische Universität Darmstadt, Germany

Computing with Infinite Data, Dagstuhl, October 2011

The Bolzano-Weierstraß principle

A real number is a sequence of rational numbers with Cauchy-rate 2^{-n} .

Definition

(BW):

Every bounded sequence $(x_n)_n \subseteq \mathbb{R}$ has a cluster point.

Equivalently, every bounded sequence $(x_n)_n \subseteq \mathbb{R}$ contains a Cauchy-subsequence (y_n) with Cauchy-rate 2^{-n} , i.e. with

$$\forall n \,\forall i,j \ge n \, \left(|y_i - y_j| < 2^{-n} \right).$$

Definition

 $(\mathsf{BW}_{\mathsf{weak}})$:

Every bounded sequence $(x_n)_n \subseteq \mathbb{R}$ contains a Cauchy-subsequence $(y_n)_n$,

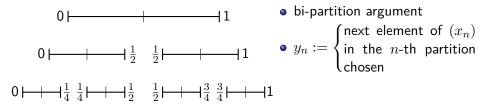
i.e.

$$\forall n \,\exists k \,\forall i, j \geq k \, \left(|y_i - y_j| < 2^{-n} \right).$$

Computing BW

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$.

Goal: Construct a subsequence (y_n) with $\forall n \forall i, j \ge n \ (|y_i - y_j| < 2^{-n})$.



• The partitions form a Π_2^0 -0/1-tree.

• This is a Π_1^0 -0/1-tree in 0'.

• WKL relativized to 0' yields an infinite branch and therefore computes the sequence of partitions.

Theorem (Kohlenbach '98, Kohlenbach, Safarik '10, K. '10)

- For each computable sequence (x_n) there is a 0'-computable 0/1-tree T, such that an infinite branch of T computes a cluster point, and vice versa.
- Over RCA₀ the principles BW and WKL for Σ⁰₁-trees are instance-wise equivalent.

By the low basis theorem:

Corollary

BW has for computable instances a solution low relative to 0', *i.e.* the first Turing jump of a solution is computable in 0".

Computing BW_{weak}

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$. Goal: Construct a subsequence (y_n) with $\forall n \exists k \forall i, j \geq k \ (|y_i - y_j| < 2^{-n})$ and compute the Turing jump of (y_n) .

It is clear that

$$\Phi_e^{(y_n)_n} \downarrow \quad \text{iff} \quad \exists k \, \Phi_e^{(y_n)_{n < k}} \downarrow.$$

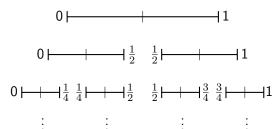
Suppose that $(y_n)_{n < m}$ is an initial segment that has already been computed. Deciding, whether there is an extension $(y_n)_{n < l}$, such that

 $\Phi_e^{(y_n)_{n<l}}\downarrow$

can be done in 0'.

Computing BW_{weak}

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$. Goal: Construct a subsequence (y_n) with $\forall n \exists k \forall i, j \geq k \ (|y_i - y_j| < 2^{-n})$ and compute the Turing jump of (y_n) .



- bi-partition argument
- now add at each step not only one element but finitely many elements of the chosen interval to (y_n).
- Let $(y_n)_{n < m}$ be the initial segment of (y_n) computed up to the k-th step. At the k-th step extend this to $(y_n)_{n < l}$ by elements in the k-th

chosen interval, such that $\Phi_k^{(y_n)_{n < l}}\downarrow$, if possible.

• Then extend this by another element of the interval.

Theorem (K.)

For each bounded, computable sequence (x_n) there is a Cauchy-subsequence (y_n) , such that (y_n) and $(y_n)'$ are computable in a Turing degree that contains infinite branches of 0'-computable 0/1-trees.

Corollary

 BW_{weak} has low_2 solutions, i.e. $(y_n)''$ is computable in 0''.

Proof.

$$(y_n)' \leq_T 0' + \mathsf{WKL} \implies (y_n)'' \leq_T 0''$$

 $\mathsf{BW}_{\mathsf{weak}}$ does not compute 0' and is therefore strictly weaker than BW.

The cohesive principle

Write $X \subseteq^* Y$ if $X \setminus Y$ is finite.

Definition

• A set X is *cohesive* for a sequence of set $(R_n)_n \subseteq 2^{\mathbb{N}}$ if

$$X \subseteq^* R_n \lor X \subseteq^* \overline{R_n}$$
 for each n .

• The *cohesive principle* (COH) states that for each $(R_n)_n$ there is an infinite cohesive set X.

Theorem (K.)

- For each sequence (x_n)_n ⊆ ℝ there exists (R_n)_n ⊆ 2^N, such that from an infinite cohesive set for (R_n) one can compute a Cauchy-subsequence of (x_n) and vice versa.
- RCA₀ ⊢ BW_{weak} ↔ COH ∧ BΣ₂⁰ Moreover, this equivalence also holds instance-wise.

A. Kreuzer (TU Darmstadt)

Theorem

- 1. COH and hence also BW_{weak} do not compute solutions to WKL in general. (Cholak, Jockusch, Slaman '01)
- 2. There are instance of these principles which have no low solutions. (Jockusch, Stephan '93)

2. refines a result by Le Roux and Ziegler.

Proof of the low_2 -ness of BW_{weak} is a streamlined version of the low_2 -ness of COH (Jockusch, Stephan '93).

Theorem (Chong, Slaman, Yang '10)

 $\mathsf{RCA}_0 + \mathsf{COH} + B\Sigma_2^0$ and thus $\mathsf{RCA}_0 + \mathsf{BW}_{\mathsf{weak}}$ are Π_1^1 -conservative over $\mathsf{RCA}_0 + B\Sigma_2^0$.

Theorem (K., Kohlenbach '10)

If WKL₀ + BW_{weak} $\vdash \forall f \exists y \phi(f, y)$ for quantifier free ϕ , then one can extract from a given proof a **primitive recursive** (in the sense of Kleene) function(al) t such that $\forall f \phi(f, t(f))$.

• "Proof mining"

We consider the Hilbert space $\ell_2 = (\mathbb{R}^{\mathbb{N}}, \langle \cdot, \cdot \rangle)$. An element of ℓ_2 is given by a Cauchy-sequence $(w_n)_n$ of finite dimensional and rational approximations, i.e. $w_n \in \mathbb{Q}^{<\mathbb{N}}$, with Cauchy-rate 2^{-n} with respect to $\|\cdot\|$.

Definition

(weak-BW): Every $\|\cdot\|$ -bounded sequence $(x_n) \subseteq \ell_2$ has a weak cluster point x, i.e. for a subsequence $(x_{f(n)})$ we have $\forall y \in \ell_2 \lim_{n \to \infty} \langle y, x_{f(n)} \rangle = \langle y, x \rangle.$

Bolzano-Weierstraß in the weak topology (cont.)

Theorem (K.)

- 1. For each bounded sequence $(x_n) \subseteq \ell_2$ there is a weak cluster point x computable in 0''.
- 2. There is a bounded and computable sequence $(x_n) \subseteq \ell_2$, such that each weak cluster point of it computes 0''.
- 3. Over RCA_0 the principles Π_2^0 -CA and weak-BW are *instance-wise* equivalent.

Proof of 1.

- Use BW to compute a cluster point y = (y₁, y₂,...) ∈ ℝ^N of (x_n) in the topology of ℝ^N.
 Computable in 0' + WKL (BW for ℝ is the same as for ℝ^N.)
- $\sum_{i < k} y_i e_i$ converges monotonically in ℓ_2 to a weak cluster point of (x_n) . Computable in the jump.

Using the classification of the Bolzano-Weierstraß principle for metric spaces in the Weihrauch lattice (Brattka, Gherardi, Marcone '11) we can also obtain the following.

Theorem

$$\mathsf{weak}\text{-}\mathsf{BW} \equiv_{sW} \lim{}^{(2)}$$

The weak presentation of an element $x \in \ell_2$ is a sequence of finite dimensional approximations $(w_n)_n$ and a norm-bound b such that

$$\lim_{n \to \infty} w_n = x \quad \text{and} \quad \forall n \, \|w_n\|_2 < b$$

Question (Brattka)

What is the computation strength of the Bolzano-Weierstraß principle for elements of ℓ_2 given in the **weak presentation**?

Question

What is the computational strength of the Bolzano-Weierstraß principle for elements of \mathbb{R} given by **slowly converging sequences** as input and output?

For BW_{weak} the input is given by sequences with Cauchy-rate 2^{-n} and the output by slowly converging sequence.

- $\bullet~$ BW is equivalent to WKL for $0'\mbox{-}computable$ trees.
- BW_{weak} is equivalent to COH.
 - Hence, it does not imply 0'.
 - It admits extraction of primitive recursive terms.
- weak-BW is equivalent to 0''.

Alexander P. Kreuzer

The cohesive principle and the Bolzano-Weierstraß principle, Math. Log. Quart. **57** (2011), no. 3, 292–298.

Alexander P. Kreuzer and Ulrich Kohlenbach, Term extraction and Ramsey's theorem for pairs, submitted.

Alexander P. Kreuzer, On the strength of weak compactness, preprint, arXiv:1106.5124.