Non-principal ultrafilters, program extraction and higher order reverse mathematics

Alexander P. Kreuzer

ENS Lyon

Chocola, November 2012

Outline

- 1 The logical systems and the functional interpretation
- 2 Ultrafilters
- The results
- 4 Idempotent ultrafilters
- 5 Elimination of monotone Skolem functions

Outline

- 1 The logical systems and the functional interpretation
- 2 Ultrafilters
- The results
- 4 Idempotent ultrafilters
- 5 Elimination of monotone Skolem functions

Higher order arithmetic

Definition (RCA $_0^{\omega}$, Recursive comprehension, Kohlenbach '05)

 RCA_0^ω is the finite type extension of RCA_0 :

- Sorted into type 0 for \mathbb{N} , type 1 for $\mathbb{N}^{\mathbb{N}}$, type 2 for $\mathbb{N}^{\mathbb{N}^{\mathbb{N}}}$, ...,
- contains basic arithmetic: 0, successor, +, \cdot , λ -abstraction,
- quantifier-free axiom of choice restricted to choice of numbers over functions (QF-AC^{1,0}), i.e.,

$$\forall f^1 \, \exists y^0 \, \mathsf{A}_{\!q\mathit{f}}(f,y) \,{\to}\, \exists G^2 \, \forall f^1 \, \mathsf{A}_{\!q\mathit{f}}(f,G(f))$$

ullet and a recursor R_0 , which provides primitive recursion (for numbers),

$$R_0(0, y^0, f) = y,$$
 $R_0(x+1, y, f) = f(R_0(x, y, f), x),$

• Σ_1^0 -induction.

The closed terms of RCA₀^{ω} will be denoted by T_0 . In Kohlenbach's books this system is denoted by $\widehat{\text{E-PA}}^{\omega} \upharpoonright + \text{QF-AC}^{1,0}$.

Functional interpretation

Theorem (Functional interpretation)

If

$$\mathsf{RCA}_0^\omega \vdash \forall x \, \exists y \, \mathsf{A}_{qf}(x,y)$$

the one can extract a term $t \in T_0$, such that

$$\mathsf{RCA}_0^\omega \vdash \forall x \, \mathsf{A}_{qf}(x, t(x)).$$

Functional interpretation

Theorem (Functional interpretation)

lf

$$\mathsf{RCA}_0^\omega \vdash \forall x \, \exists y \, \mathsf{A}_{qf}(x,y)$$

the one can extract a term $t \in T_0$, such that

$$\mathsf{RCA}_0^\omega \vdash \forall x \, \mathsf{A}_{\mathsf{qf}}(x, t(x)).$$

Sketch of proof.

Apply the following proof translations:

- Elimination of extensionality,
- a negative translation,
- Gödel's Dialectica translation.

See Kohlenbach: Applied Proof Theory.

The intuition behind the functional interpretation

Each formula can be assigned an equivalent $\forall \exists$ -formula. E.g.

$$A :\equiv \forall x \,\exists y \,\forall z \, A_{qf}(x, y, z)$$

will be assigned

$$A^{ND} \equiv \forall x \, \forall f_z \, \exists y \, A_{qf}(x, y, f_z(y)).$$

The intuition behind the functional interpretation

Each formula can be assigned an equivalent $\forall \exists$ -formula. E.g.

$$A :\equiv \forall x \,\exists y \,\forall z \, A_{qf}(x, y, z)$$

will be assigned

$$A^{ND} \equiv \forall x \, \forall f_z \, \exists y \, A_{qf}(x, y, f_z(y)).$$

• This assignment preserves logical rules, like

$$\frac{A \qquad A \to B}{B}$$
,

and exhibits programs.

 Thus, to prove the program extraction theorem we only have to provide programs for the axioms.

Arithmetical comprehension

Let Π_1^0 -CA be the schema

$$\forall f\,\exists g\,\forall n\,\left(g(n)=0 \leftrightarrow \forall x\,f(n,x)=0\right).$$

Define ACA^ω_0 to be $\mathsf{RCA}^\omega_0 + \Pi^0_1\text{-CA}.$

Arithmetical comprehension

Let Π_1^0 -CA be the schema

$$\forall f \,\exists g \,\forall n \, (g(n) = 0 \leftrightarrow \forall x \, f(n, x) = 0) \,.$$

Define ACA₀^{ω} to be RCA₀^{ω} + Π_1^0 -CA.

Let Feferman's μ be

$$\mu(f) := \begin{cases} \min\{x \mid f(x) = 0\} & \text{if } \exists x \, f(x) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Denote by (μ) be the statement that μ exists.

Arithmetical comprehension

Let Π_1^0 -CA be the schema

$$\forall f \,\exists g \,\forall n \, (g(n) = 0 \leftrightarrow \forall x \, f(n, x) = 0) \,.$$

Define ACA₀^{ω} to be RCA₀^{ω} + Π_1^0 -CA.

Let Feferman's μ be

$$\mu(f) := \begin{cases} \min\{x \mid f(x) = 0\} & \text{if } \exists x \, f(x) = 0, \\ 0 & \text{otherwise}. \end{cases}$$

Denote by (μ) be the statement that μ exists.

Theorem

- $\bullet \ \mathsf{RCA}^\omega_0 + (\mu) \vdash \Pi^0_1\text{-CA}$
- ullet RCA $_0^\omega+(\mu)$ is Π^1_2 -conservative over ACA $_0^\omega$

Theorem (Functional interpretation relative to μ)

If

$$\mathsf{RCA}^{\omega}_0 + (\mu) \vdash \forall x \,\exists y \, \mathsf{A}_{\mathsf{qf}}(x,y)$$

the one can extract a term $t \in T_0[\mu]$, such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall x \, \mathsf{A}_{\mathsf{af}}(x, t(x)).$$

Theorem (Functional interpretation relative to μ)

If

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall x \,\exists y \, \mathsf{A}_{\mathsf{qf}}(x,y)$$

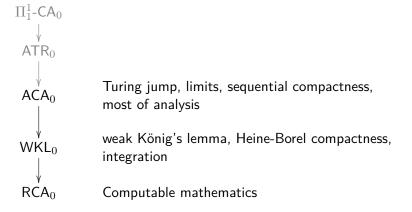
the one can extract a term
$$t \in T_0[\mu]$$
, such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall x \, \mathsf{A}_{\mathsf{qf}}(x, t(x)).$$

We interpreted ACA $_0^{\omega}$ non-constructively using μ .

One can also interpret ACA^ω_0 directly using bar recursion.

Reverse mathematics — The Big Five



Proofs in RCA $_0^\omega$, ACA $_0^\omega$ can be simulated in RCA $_0$ resp. ACA $_0$ and vice versa.

Outline

- The logical systems and the functional interpretation
- 2 Ultrafilters
- The results
- 4 Idempotent ultrafilters
- 5 Elimination of monotone Skolem functions

Filter

Filter

A set $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ is a *filter over* \mathbb{N} if

- $\forall X, Y \ (X \in \mathcal{F} \land X \subseteq Y \rightarrow Y \in \mathcal{F}),$
- $\forall X, Y \ (X, Y \in \mathcal{F} \to X \cap Y \in \mathcal{F}),$
- \bullet $\emptyset \notin \mathcal{F}$

Ultrafilter

A filter \mathcal{F} is an <u>ultrafilter</u> if it is maximal, i.e.,

$$\forall X \ \left(X \in \mathcal{F} \lor \overline{X} \in \mathcal{F} \right)$$

 $\mathcal{P}_n := \{X \subseteq \mathbb{N} \mid n \in X\}$ is an ultrafilter. These filters are called *principal*.

The Fréchet filter $\{X \subseteq \mathbb{N} \mid X \text{ cofinal}\}$ is a filter but not an ultrafilter.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if

- $\forall X \ (X \in \mathcal{U} \lor \overline{X} \in \mathcal{U}),$
- $\bullet \ \forall X, Y \ (X \in \mathcal{U} \land X \subseteq Y \to Y \in \mathcal{U}),$
- $\bullet \ \forall X,Y \ (X,Y\in \mathcal{U} \to X\cap Y\in \mathcal{U}),$
- $\forall X \ (X \in \mathcal{U} \to X \text{ is infinite}).$

The existence of a non-principal ultrafilter is not provable in ZF.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if

- $\forall X \ (X \in \mathcal{U} \lor \overline{X} \in \mathcal{U}),$
- $\bullet \ \forall X,Y \ (X \in \mathcal{U} \land X \subseteq Y \mathbin{\rightarrow} Y \in \mathcal{U}),$
- ullet $\forall X,Y \ (X,Y\in \mathcal{U} \rightarrow X\cap Y\in \mathcal{U})$,
- $\bullet \ \forall X \ (X \in \mathcal{U} \,{\to}\, X \text{ is infinite}).$

Coding sets as characteristic function, i.e, $n \in X := [X(n) = 0]$, this can be formulated in RCA₀:

$$(\mathcal{U}): \begin{cases} \exists \mathcal{U}^{2} \left(\ \forall X^{1} \ \left(X \in \mathcal{U} \lor \overline{X} \in \mathcal{U} \right) \\ \land \forall X^{1}, Y^{1} \ \left(X \cap Y \in \mathcal{U} \to Y \in \mathcal{U} \right) \\ \land \forall X^{1}, Y^{1} \ \left(X, Y \in \mathcal{U} \to (X \cap Y) \in \mathcal{U} \right) \\ \land \forall X^{1} \ \left(X \in \mathcal{U} \to \forall n \ \exists k > n \ (k \in X) \right) \\ \land \forall X^{1} \ \left(\mathcal{U}(X) =_{0} \operatorname{sg}(\mathcal{U}(X)) =_{0} \mathcal{U}(\lambda n. \operatorname{sg}(X(n))) \right) \right) \end{cases}$$

Outline

- The logical systems and the functional interpretation
- 2 Ultrafilters
- The results
- Idempotent ultrafilters
- 5 Elimination of monotone Skolem functions

Theorem (K.)

$$\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash (\mu)$$

In particular, $\mathsf{RCA}^\omega_0 + (\mathcal{U})$ proves arithmetical comprehension.

Theorem (K.)

$$\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash (\mu)$$

In particular, $\mathsf{RCA}^\omega_0 + (\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let $f \colon \mathbb{N} \to \mathbb{N}$ and set $X_f := \{n \mid \exists m \le n \ f(m) = 0\}.$

Then

$$\exists n \, (f(n) = 0) \iff X_f \text{ is cofinite}$$

 $\iff X_f \in \mathcal{U}$

Theorem (K.)

$$\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash (\mu)$$

In particular, $\mathsf{RCA}^\omega_0 + (\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let $f: \mathbb{N} \to \mathbb{N}$ and set $X_f := \{n \mid \exists m \leq n \ f(m) = 0\}.$

$$\exists n \, (f(n) = 0) \Longleftrightarrow X_f \text{ is cofinite}$$

 $\Longleftrightarrow X_f \in \mathcal{U}$

Thus

$$\forall f (X_f \in \mathcal{U} \to \exists n \ f(n) = 0$$

Theorem (K.)

$$\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash (\mu)$$

In particular, $\mathsf{RCA}^\omega_0 + (\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let $f: \mathbb{N} \to \mathbb{N}$ and set $X_f := \{n \mid \exists m \leq n \ f(m) = 0\}.$ Then

$$\exists n \, (f(n) = 0) \Longleftrightarrow X_f \text{ is cofinite}$$

 $\Longleftrightarrow X_f \in \mathcal{U}$

Thus

$$\forall f (X_f \in \mathcal{U} \to \exists n (f(n) = 0 \land \forall n' < n f(n) \neq 0))$$

Theorem (K.)

$$\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash (\mu)$$

In particular, $\mathsf{RCA}^\omega_0 + (\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let $f: \mathbb{N} \to \mathbb{N}$ and set $X_f := \{n \mid \exists m \leq n \ f(m) = 0\}.$ Then

$$\exists n \, (f(n) = 0) \Longleftrightarrow X_f \text{ is cofinite}$$
 $\iff X_f \in \mathcal{U}$

Thus

$$\forall f \left(X_f \in \mathcal{U} \to \exists n \left(f(n) = 0 \land \forall n' < n f(n) \neq 0 \right) \right)$$

QF-AC^{1,0} yields a functional satisfying (μ) .

Theorem (K.)

 $\mathsf{RCA}_0^\omega + (\mathcal{U})$ is Π_2^1 -conservative over $\mathsf{RCA}_0^\omega + (\mu)$ and thus also over ACA_0^ω .

Theorem (K.)

 $\mathsf{RCA}_0^\omega + (\mathcal{U})$ is Π_2^1 -conservative over $\mathsf{RCA}_0^\omega + (\mu)$ and thus also over ACA_0^ω .

Proof sketch

Suppose $\mathsf{RCA}^\omega_0 + (\mathcal{U}) \vdash \forall f \, \exists g \, \mathsf{A}(f,g)$ and A does not contain $\mathcal{U}.$

Theorem (K.)

 $\mathsf{RCA}_0^\omega + (\mathcal{U})$ is Π_2^1 -conservative over $\mathsf{RCA}_0^\omega + (\mu)$ and thus also over ACA_0^ω .

Proof sketch

Suppose $\mathsf{RCA}^\omega_0 + (\mathcal{U}) \vdash \forall f \, \exists g \, \mathsf{A}(f,g)$ and A does not contain \mathcal{U} .

• The functional interpretation yields a term $t \in T_0[\mu]$, such that

$$\forall f \, \mathsf{A}(f, t(\mathcal{U}, f)).$$

Theorem (K.)

 $\mathsf{RCA}_0^\omega + (\mathcal{U})$ is Π_2^1 -conservative over $\mathsf{RCA}_0^\omega + (\mu)$ and thus also over ACA_0^ω .

Proof sketch

Suppose $RCA_0^{\omega} + (\mathcal{U}) \vdash \forall f \exists g \, A(f,g)$ and A does not contain \mathcal{U} .

① The functional interpretation yields a term $t \in T_0[\mu]$, such that

$$\forall f \, \mathsf{A}(f, t(\mathcal{U}, f)).$$

② Normalizing t, such that each occurrence of $\mathcal U$ in t is of the form

$$\mathcal{U}(t'(n^0))$$
 for a term $t'(n^0) \in T_0[\mathcal{U}, \mu, f]$.

In particular, $\mathcal U$ is only used on countably many sets (for each fixed f).

Theorem (K.)

 $\mathsf{RCA}_0^\omega + (\mathcal{U})$ is Π_2^1 -conservative over $\mathsf{RCA}_0^\omega + (\mu)$ and thus also over ACA_0^ω .

Proof sketch

Suppose $RCA_0^{\omega} + (\mathcal{U}) \vdash \forall f \exists g \, A(f,g)$ and A does not contain \mathcal{U} .

① The functional interpretation yields a term $t \in T_0[\mu]$, such that

$$\forall f \, \mathsf{A}(f, t(\mathcal{U}, f)).$$

② Normalizing t, such that each occurrence of $\mathcal U$ in t is of the form

$$\mathcal{U}(t'(n^0))$$
 for a term $t'(n^0) \in T_0[\mathcal{U}, \mu, f]$.

In particular, $\mathcal U$ is only used on countably many sets (for each fixed f).

Step 1: Functional interpretation

Suppose $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f^1 \, \exists g^1 \, \mathsf{A}(f,g)$ where A is arithmetical and does not contain \mathcal{U} .

Modulo μ the formula A is quantifier-free.

Step 1: Functional interpretation

Suppose $RCA_0^{\omega} + (\mathcal{U}) \vdash \forall f^1 \exists g^1 A(f,g)$ where A is arithmetical and does not contain \mathcal{U} .

Modulo μ the formula A is quantifier-free. Recall (\mathcal{U}):

$$(\mathcal{U}): \begin{cases} \exists \mathcal{U}^{2} \left(\ \forall X^{1} \ \left(X \in \mathcal{U} \lor \overline{X} \in \mathcal{U} \right) \\ \land \forall X^{1}, Y^{1} \ \left(X \cap Y \in \mathcal{U} \to Y \in \mathcal{U} \right) \\ \land \forall X^{1}, Y^{1} \ \left(X, Y \in \mathcal{U} \to (X \cap Y) \in \mathcal{U} \right) \\ \land \forall X^{1} \ \left(X \in \mathcal{U} \to \forall n \ \exists k > n \ (k \in X) \right) \\ \land \forall X^{1} \ \left(\mathcal{U}(X) =_{0} \operatorname{sg}(\mathcal{U}(X)) =_{0} \mathcal{U}(\lambda n. \operatorname{sg}(X(n))) \right) \end{cases}$$

Modulo $RCA_0^{\omega} + (\mu)$ this is of the form $\exists \mathcal{U}^2 \, \forall Z^1 \, (\mathcal{U})_{qf}(\mathcal{U}, Z)$.

Step 1: Functional interpretation

Suppose $RCA_0^{\omega} + (\mathcal{U}) \vdash \forall f^1 \exists g^1 A(f,g)$ where A is arithmetical and does not contain \mathcal{U} .

 $\label{eq:modulo} \mbox{Modulo} \ \mu \ \mbox{the formula A is quantifier-free}.$

Recall (\mathcal{U}) :

$$(\mathcal{U}): \begin{cases} \exists \mathcal{U}^{2} \left(\ \forall X^{1} \ \left(X \in \mathcal{U} \lor \overline{X} \in \mathcal{U} \right) \right. \\ \wedge \forall X^{1}, Y^{1} \ \left(X \cap Y \in \mathcal{U} \to Y \in \mathcal{U} \right) \\ \wedge \forall X^{1}, Y^{1} \ \left(X, Y \in \mathcal{U} \to (X \cap Y) \in \mathcal{U} \right) \\ \wedge \forall X^{1} \ \left(X \in \mathcal{U} \to \forall n \ \exists k > n \ (k \in X) \right) \\ \wedge \forall X^{1} \ \left(\mathcal{U}(X) =_{0} \operatorname{sg}(\mathcal{U}(X)) =_{0} \mathcal{U}(\lambda n. \operatorname{sg}(X(n))) \right) \end{cases}$$

Modulo RCA $_0^\omega + (\mu)$ this is of the form $\exists \mathcal{U}^2 \, \forall Z^1 \, (\mathcal{U})_{qf}(\mathcal{U}, Z)$. Thus

$$\mathsf{RCA}^\omega_0 + (\mu) \vdash \forall \mathcal{U}^2 \, \forall f^1 \, \exists Z^1 \, \exists g^1 \, \Big((\mathcal{U})_{\mathsf{qf}} (\mathcal{U}, Z) \, {\to} \, \mathsf{A}_{\mathsf{qf}} (f, g) \Big).$$

Step 1: Functional interpretation (cont.)

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \, \forall f^1 \, \exists Z^1 \, \exists g^1 \, \Big((\mathcal{U})_{\mathsf{qf}} (\mathcal{U}, Z) \, \rightarrow \, \mathsf{A}_{\mathsf{qf}} (f, g) \Big).$$

The functional interpretation extracts terms $t_Z, t_g \in T_0[\mu]$, such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \, \forall f^1 \, \Big((\mathcal{U})_{\mathsf{qf}} (\mathcal{U}, t_Z(\mathcal{U}, f)) \to \mathsf{A}_{\mathsf{qf}} (f, t_g(\mathcal{U}, f)) \Big).$$

Step 2: Term normalization

The terms t_Z, t_g are made of

- ullet 0, successor, +, \cdot , λ -abstraction
- the primitive recursor R_0 , i.e.

$$R_0(0, y, f) = y,$$
 $R_0(x + 1, y, f) = f(R_0(x, y, f), x),$

- ullet μ^2 and
- the parameters \mathcal{U}^2, f^1 .

Step 2: Term normalization

The terms t_Z, t_g are made of

- ullet 0, successor, +, \cdot , λ -abstraction
- ullet the primitive recursor R_0 , i.e.

$$R_0(0, y, f) = y,$$
 $R_0(x + 1, y, f) = f(R_0(x, y, f), x),$

- ullet μ^2 and
- the parameters \mathcal{U}^2, f^1 .

With coding R_0 is of type 2. The functional \mathcal{U} is also of type 2.

 \Longrightarrow no functional can take ${\mathcal U}$ as parameter.

Step 2: Term normalization

The terms t_Z, t_g are made of

- 0, successor, +, \cdot , λ -abstraction
- ullet the primitive recursor R_0 , i.e.

$$R_0(0, y, f) = y,$$
 $R_0(x + 1, y, f) = f(R_0(x, y, f), x),$

- ullet μ^2 and
- the parameters \mathcal{U}^2, f^1 .

With coding R_0 is of type 2. The functional ${\cal U}$ is also of type 2.

 \Longrightarrow no functional can take ${\mathcal U}$ as parameter.

Lemma

The terms t_Z, t_g can be normalized, such that each occurrence of ${\cal U}$ is of the form

$$\mathcal{U}(t'(n^0))$$
 for a term t' possible containing \mathcal{U}, f .

Step 2: Term normalization (cont.)

Proof.

Consider $t[\mathcal{U}, f, n^0]$, where \mathcal{U}, f, n^0 are variables.

Assume that all possible λ -reductions haven been carried out. Then one of the following holds:

- **1** t = 0,
- $2 t = S(t_1'), \ t = f(t_1'), \ t = t_1' + t_2', \ t(n) = t_1' \cdot t_2',$

Restart the procedure with t_1' , t_2' and $t_q'm^0$.

Step 3: Construction of (a substitute for) ${\cal U}$

We fix an f and construct a filter \mathcal{F} , such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash (\mathcal{U})_{qf}(\mathcal{F}, t_Z(\mathcal{F}, f)). \tag{*}$$

Step 3: Construction of (a substitute for) \mathcal{U}

We fix an f and construct a filter \mathcal{F} , such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash (\mathcal{U})_{qf}(\mathcal{F}, t_Z(\mathcal{F}, f)). \tag{*}$$

This yields then

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall f \, \mathsf{A}_{qf}(f, t_g(\mathcal{F}, f))$$

and thus the theorem.

Step 3: Construction of (a substitute for) $\mathcal U$

We fix an f and construct a filter \mathcal{F} , such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash (\mathcal{U})_{\mathsf{qf}}(\mathcal{F}, t_Z(\mathcal{F}, f)). \tag{*}$$

This yields then

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall f \, \mathsf{A}_{qf}(f, t_g(\mathcal{F}, f))$$

and thus the theorem.

Let t_1, \ldots, t_k be the list term with $\mathcal{U}(t_j(n))$ in t_Z, t_g .

- ullet Assume that t_1,\ldots is ordered according to the subterm ordering.
- We start with the trivial filter $\mathcal{F}_0 = \{\mathbb{N}\}.$
- For each t_i we build a refined $\mathcal{F}_i \supseteq \mathcal{F}_{i-1}$ such that $(\mathcal{U})_{qf}$ relativized the sets coded by t_1, \ldots, t_i holds.
- $\mathcal{F} := \mathcal{F}_k$ solves then (*).

Step 3: Sketch of the construction of \mathcal{F}_1

Let $\mathcal{A}:=\{A_1,A_2,\dots\}$ be the set of subsets of \mathbb{N} coded by t_1 . We assume that \mathcal{A} is closed under union, intersection and inverse.

Step 3: Sketch of the construction of \mathcal{F}_1

Let $\mathcal{A} := \{A_1, A_2, \dots\}$ be the set of subsets of \mathbb{N} coded by t_1 . We assume that \mathcal{A} is closed under union, intersection and inverse.

We want a filter \mathcal{F}_1 , such that

- $\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \lor \overline{X} \in \mathcal{F}_1)$,
- $\forall X, Y \in \mathcal{A} \ (X \in \mathcal{F}_1 \land X \subseteq Y \rightarrow Y \in \mathcal{F}_1)$,
- $\forall X, Y \in \mathcal{A} \ (X, Y \in \mathcal{F}_1 \to X \cap Y \in \mathcal{F}_1),$
- $\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \to X \text{ is infinite}).$

Step 3: Sketch of the construction of \mathcal{F}_1

Let $\mathcal{A} := \{A_1, A_2, \dots\}$ be the set of subsets of \mathbb{N} coded by t_1 . We assume that \mathcal{A} is closed under union, intersection and inverse.

We want a filter \mathcal{F}_1 , such that

- $\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \lor \overline{X} \in \mathcal{F}_1)$,
- $\forall X, Y \in \mathcal{A} \ (X \in \mathcal{F}_1 \land X \subseteq Y \rightarrow Y \in \mathcal{F}_1)$,
- $\forall X, Y \in \mathcal{A} \ (X, Y \in \mathcal{F}_1 \to X \cap Y \in \mathcal{F}_1)$,
- $\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \to X \text{ is infinite}).$

Construction:

- We decide for each $i=1,2,\ldots$ whether we put A_i or $\overline{A_i}$ into \mathcal{F}_1 .
- We put A_i into \mathcal{F}_1 if the intersection of A_i with the previously chosen sets is infinite. Otherwise we put $\overline{A_i}$ into \mathcal{F}_1 .

Program extraction

Corollary (to the proof)

If $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \, \mathsf{A}_{\mathsf{qf}}(f,g)$ and A_{qf} does not contain \mathcal{U} then one can extract a term $t \in T_0[\mu]$, such that

$$\mathsf{RCA}^{\omega}_0 + (\mu) \vdash \mathsf{A}_{qf}(f, t(f)).$$

Program extraction

Corollary (to the proof)

If $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \, \mathsf{A}_{\mathsf{qf}}(f,g)$ and A_{qf} does not contain \mathcal{U} then one can extract a term $t \in T_0[\mu]$, such that

$$\mathsf{RCA}^{\omega}_0 + (\mu) \vdash \mathsf{A}_{qf}(f, t(f)).$$

Corollary

If $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \, \mathsf{A}_{\mathsf{qf}}(f,g)$ and A_{qf} does not contain \mathcal{U} then one can extract a term t in Gödel's System T, such that

$$A_{qf}(f,t(f))$$

Proof.

- ullet The previous corollary yields a term primitive recursive in μ .
- Interpreting the term using the bar recursor $B_{0,1}$ and then using Howard's ordinal analysis gives a term $t \in T$.

Outline

- The logical systems and the functional interpretation
- 2 Ultrafilters
- The results
- 4 Idempotent ultrafilters
- 5 Elimination of monotone Skolem functions

Idempotent ultrafilters

- The set of all ultrafilter on $\mathbb N$ can be identified with the Stone-Čech compactification $\beta\mathbb N$ of $\mathbb N$.
- Addition + can be extended from $\mathbb N$ to $\beta \mathbb N$:

$$X \in \mathcal{U} + \mathcal{V}$$
 iff $\{n \mid (X - n) \in \mathcal{U}\} \in \mathcal{V}$

Idempotent ultrafilters

- The set of all ultrafilter on $\mathbb N$ can be identified with the Stone-Čech compactification $\beta \mathbb N$ of $\mathbb N$.
- Addition + can be extended from $\mathbb N$ to $\beta \mathbb N$:

$$X \in \mathcal{U} + \mathcal{V}$$
 iff $\{n \mid (X - n) \in \mathcal{U}\} \in \mathcal{V}$

Theorem (Ellis '58)

Every left-topological compact semi-group contains an idempotent.

Thus, there exists an *idempotent* ultrafilter, i.e. a \mathcal{U} with $\mathcal{U} + \mathcal{U} = \mathcal{U}$.

Idempotent ultrafilters

- The set of all ultrafilter on $\mathbb N$ can be identified with the Stone-Čech compactification $\beta \mathbb N$ of $\mathbb N$.
- Addition + can be extended from $\mathbb N$ to $\beta \mathbb N$:

$$X \in \mathcal{U} + \mathcal{V}$$
 iff $\{n \mid (X - n) \in \mathcal{U}\} \in \mathcal{V}$

Theorem (Ellis '58)

Every left-topological compact semi-group contains an idempotent.

Thus, there exists an *idempotent* ultrafilter, i.e. a \mathcal{U} with $\mathcal{U} + \mathcal{U} = \mathcal{U}$. Let (\mathcal{U}_{idem}) be the statement that an idempotent ultrafilter exists and IHT the so-called "iterated Hindman's Theorem".

Theorem (K.)

- $\mathsf{RCA}^{\omega}_0 \vdash (\mathcal{U}_{idem}) \rightarrow \mathsf{IHT}$
- $\mathsf{ACA}^\omega_0 + (\mu) + \mathsf{IHT} + (\mathcal{U}_{idem})$ is Π^1_2 -conservative over $\mathsf{ACA}^\omega_0 + \mathsf{IHT}$.

Outline

- The logical systems and the functional interpretation
- 2 Ultrafilters
- The results
- 4 Idempotent ultrafilters
- 5 Elimination of monotone Skolem functions

Restrict the uses of $\mathcal U$ to the form $\mathcal U(t_0)$, where t_0 does not contain $\mathcal U$.

Restrict the uses of $\mathcal U$ to the form $\mathcal U(t_0)$, where t_0 does not contain $\mathcal U$. Goal: Show that restricted uses of Π^0_1 -CA suffices.

Restrict the uses of \mathcal{U} to the form $\mathcal{U}(t_0)$, where t_0 does not contain \mathcal{U} . Goal: Show that restricted uses of Π^0_1 -CA suffices.

Full Π₁⁰-CA:

$$\Pi^0_1\text{-CA}\colon \ \forall \textbf{\textit{f}}\ \exists g\ \forall n\ (g(n)=0 \leftrightarrow \forall x\, f(n,x)=0)\,.$$

Restrict the uses of $\mathcal U$ to the form $\mathcal U(t_0)$, where t_0 does not contain $\mathcal U$. Goal: Show that restricted uses of Π^0_1 -CA suffices.

• Full Π_1^0 -CA:

$$\Pi^0_1\text{-CA}\colon \ \forall \textbf{\textit{f}}\ \exists g\ \forall n\ (g(n)=0 \leftrightarrow \forall x\ f(n,x)=0)\ .$$

• Instance of Π_1^0 -CA:

$$\Pi^0_1\text{-CA}(\underline{f})\colon \exists g\, \forall n\; (g(n)=0 \leftrightarrow \forall x\, f(n,x)=0)\,.$$

Restrict the uses of $\mathcal U$ to the form $\mathcal U(t_0)$, where t_0 does not contain $\mathcal U$. Goal: Show that restricted uses of Π^0_1 -CA suffices.

Full Π₁⁰-CA:

$$\Pi^0_1\text{-CA}\colon \ \forall \textbf{\textit{f}}\ \exists g\ \forall n\ (g(n)=0 \leftrightarrow \forall x\, f(n,x)=0)\,.$$

• Instance of Π_1^0 -CA:

$$\Pi_1^0$$
-CA (f) : $\exists g \, \forall n \, (g(n) = 0 \leftrightarrow \forall x \, f(n, x) = 0)$.

 $\bullet \ \mathsf{RCA}_0^\omega + \Pi^0_1\text{-}\mathsf{CA} \vdash \Pi^0_\infty\text{-}\mathsf{IA}$

Restrict the uses of \mathcal{U} to the form $\mathcal{U}(t_0)$, where t_0 does not contain \mathcal{U} . Goal: Show that restricted uses of Π^0_1 -CA suffices.

Full Π₁⁰-CA:

$$\Pi^0_1\text{-CA}\colon \; \forall \pmb{f} \, \exists g \, \forall n \, \left(g(n)=0 \leftrightarrow \forall x \, f(n,x)=0\right).$$

• Instance of Π_1^0 -CA:

$$\Pi_1^0$$
-CA (f) : $\exists g \, \forall n \, (g(n) = 0 \leftrightarrow \forall x \, f(n, x) = 0)$.

- $RCA_0^{\omega} + \Pi_1^0$ - $CA \vdash \Pi_{\infty}^0$ -IA
- $\mathsf{RCA}^\omega_0 + [\Pi^0_1\text{-}\mathsf{CA}(t) \text{ for all closed terms } t] \vdash \mathsf{light\text{-}face\text{-}}\Sigma^0_2\text{-}\mathsf{IA}$

Restrict the uses of \mathcal{U} to the form $\mathcal{U}(t_0)$, where t_0 does not contain \mathcal{U} . Goal: Show that restricted uses of Π^0_1 -CA suffices.

• Full Π_1^0 -CA:

$$\Pi^0_1\text{-CA}\colon \; \forall \pmb{f} \, \exists g \, \forall n \, \left(g(n)=0 \leftrightarrow \forall x \, f(n,x)=0\right).$$

• Instance of Π_1^0 -CA:

$$\Pi_1^0$$
-CA (f) : $\exists g \, \forall n \, (g(n) = 0 \leftrightarrow \forall x \, f(n, x) = 0)$.

- $\mathsf{RCA}^\omega_0 + \Pi^0_1\text{-}\mathsf{CA} \vdash \Pi^0_\infty\text{-}\mathsf{IA}$
- $\mathsf{RCA}_0^\omega + \left[\Pi_1^0\text{-}\mathsf{CA}(t) \text{ for all closed terms } t\right] \vdash \mathsf{light-face-}\Sigma_2^0\text{-}\mathsf{IA}$
- For closed terms t: $\mathsf{RCA}_0^\omega + \Pi_1^0 \text{-} \mathsf{CA}(t) \nvdash \Sigma_3^0 \text{-} \mathsf{IA}$

Let $\mathsf{RCA}_0^{\omega^*}$ be RCA_0^ω where

- Σ^0_1 -induction is replaced by quantifier free induction,
- $-R_0$ is replaced by the 2^x -function.

Let $RCA_0^{\omega*}$ be RCA_0^{ω} where

- Σ^0_1 -induction is replaced by quantifier free induction,
- R_0 is replaced by the 2^x -function.

Then:

- $\mathsf{RCA}_0^{\omega*} + [\Pi_1^0 \mathsf{-CA}(t) \text{ for all closed terms } t] \vdash \mathsf{light-face-}\Sigma_1^0 \mathsf{-IA}$
- For closed terms t: $RCA_0^{\omega *} + \Pi_1^0 CA(t) \not\vdash \Sigma_0^0 IA$

Let $\mathsf{RCA}^{\omega*}_0$ be RCA^ω_0 where

- $-\Sigma_1^0$ -induction is replaced by quantifier free induction,
- $-R_0$ is replaced by the 2^x -function.

Then:

- $\bullet \ \mathsf{RCA}_0^{\omega*} + \left[\Pi_1^0\text{-CA}(t) \text{ for all closed terms } t\right] \vdash \mathsf{light\text{-}face\text{-}}\Sigma_1^0\text{-IA}$
- For closed terms t: $\mathsf{RCA}_0^{\omega*} + \Pi_1^0\text{-}\mathsf{CA}(t) \nvdash \Sigma_2^0\text{-}\mathsf{IA}$

If $RCA_0^{\omega *} + WKL \vdash \forall f \ (\Pi_1^0 - CA(sf) \rightarrow \exists x \ A_0(f,x))$

Theorem (Elimination of monotone Skolem functions, Kohlenbach)

for a term s, then one can extract a primitive recursive term t, such that

$$\mathsf{RCA}_0^\omega \vdash \forall f \, \mathsf{A}_0(f, tf).$$

Let $\mathsf{RCA}^{\omega*}_0$ be RCA^ω_0 where

- $-\Sigma_1^0$ -induction is replaced by quantifier free induction,
- $-R_0$ is replaced by the 2^x -function.

Then:

- $\mathsf{RCA}_0^{\omega*} + \left[\Pi_1^0\text{-CA}(t) \text{ for all closed terms } t\right] \vdash \mathsf{light}\text{-face-}\Sigma_1^0\text{-IA}$
- \bullet For closed terms t: $\mathsf{RCA}_0^{\omega*} + \Pi^0_1\text{-CA}(t) \nvdash \Sigma^0_2\text{-IA}$

Theorem (Elimination of monotone Skolem functions, Kohlenbach)

If $\mathsf{RCA}_0^{\omega*} + \mathsf{WKL} \vdash \forall f \ (\Pi_1^0 \text{-}\mathsf{CA}(sf) \to \exists x \, \mathsf{A}_0(f,x))$ for a term s, then one can extract a primitive recursive term t, such that

$$\mathsf{RCA}_0^\omega \vdash \forall f \, \mathsf{A}_0(f, tf).$$

Lemma

There is a term t, such that

$$\mathsf{RCA}_0^{\omega *} + \mathsf{WKL} \,{\to}\, \forall f\, \left(\Pi^0_1\text{-}\mathsf{CA}(tf) \,{\to}\, \mathcal{U}(f)\right).$$

Let $\mathsf{RCA}^{\omega*}_0$ be RCA^ω_0 where

- $-\Sigma_1^0$ -induction is replaced by quantifier free induction,
- $-R_0$ is replaced by the 2^x -function.

Then:

- $\mathsf{RCA}_0^{\omega*} + \left[\Pi_1^0\text{-CA}(t) \text{ for all closed terms } t\right] \vdash \mathsf{light}\text{-face-}\Sigma_1^0\text{-IA}$
- For closed terms t: $\mathsf{RCA}_0^{\omega*} + \Pi_1^0 \mathsf{-CA}(t) \nvdash \Sigma_2^0 \mathsf{-IA}$

Theorem (Elimination of monotone Skolem functions, Kohlenbach)

If $\operatorname{RCA}_0^{\omega *} + \operatorname{WKL} \vdash \forall f \ (\Pi_1^0 \operatorname{-CA}(sf) \land \mathcal{U}(s'f) \to \exists x \operatorname{A}_0(f,x))$ for terms s,s', then one can extract a primitive recursive term t, such that

$$\mathsf{RCA}_0^\omega \vdash \forall f \, \mathsf{A}_0(f, tf).$$

Lemma

There is a term t, such that

$$\mathsf{RCA}_0^{\omega *} + \mathsf{WKL} \,{\to}\, \forall f\, \left(\Pi^0_1\text{-}\mathsf{CA}(tf) \,{\to}\, \mathcal{U}(f)\right).$$

Possible Applications

Possible Applications:

- Program extraction for ultralimit arguments e.g.,
 - from fixed point theory,
 - Gromov's Theorem,
 - Ergodic theory.
- Program extraction for non-standard arguments.

Summary

- The Π^1_2 -consequences of RCA $^\omega_0+(\mathcal{U})$ and the Π^1_2 -consequences of ACA $^\omega_0$ are the same.
- Program extraction for $\mathsf{RCA}^\omega_0 + (\mathcal{U}).$
- The Π^1_2 -consequences of RCA $^\omega_0+(\mathcal{U}_{\mathrm{idem}})$ and the Π^1_2 -consequences of ACA $^\omega_0+$ IHT are the same.
- Extraction of primitive recursive programs from $RCA_0^{\omega} + \mathcal{U}(t)$.

Summary

- The Π^1_2 -consequences of RCA $^\omega_0+(\mathcal{U})$ and the Π^1_2 -consequences of ACA $^\omega_0$ are the same.
- Program extraction for $RCA_0^{\omega} + (\mathcal{U})$.
- The Π^1_2 -consequences of RCA $^\omega_0+(\mathcal{U}_{\mathrm{idem}})$ and the Π^1_2 -consequences of ACA $^\omega_0+$ IHT are the same.
- Extraction of primitive recursive programs from $RCA_0^{\omega} + \mathcal{U}(t)$.

Thank you for your attention!

References

Non-principal ultrafilters, program extraction and higher order reverse mathematics

Journal of Mathematical Logic 12 (2012), no. 1.

On idempotent ultrafilters in higher-order reverse mathematics preprint, arXiv:1208.1424.