On the Uniform Computational Content of Computability Theory

Alexander P. Kreuzer

joint work with Vasco Brattka and Matthew Hendtlass

National University of Singapore

Computability and Complexity in Analysis, July 12-15, 2015

Weihrauch reduction: Let $f, g :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$

 $f \leq_{\mathsf{W}} g \quad \text{iff} \quad \exists K, H :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N} \text{ computable } (f = H \langle \operatorname{id}, gK \rangle)$

Strong variant:

 $f \leq_{\mathsf{sW}} g \quad \text{ iff } \quad \exists K, H : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N} \text{ computable } (f = \underline{HgK})$

Mutlivalued functions

Let $f, g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ be multivalued.

$\begin{array}{l} \label{eq:point} \hline \textbf{Definition} \\ F:\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ realizes } f \text{ iff} \\ F(x) \in f(x) \qquad \text{for all } x \in \operatorname{dom}(f). \\ \\ \hline \textbf{Write } F \vdash f. \end{array}$

 $f \leq_{\mathsf{W}} g$ if

$$\exists K, H \, \forall G \vdash g \ \Big(H \langle \mathrm{id}, GK \rangle \vdash f \Big).$$

Same for \leq_{sW} .

Spaces X, Y are represented by surjective function $\delta_X, \delta_Y :\subseteq \mathbb{N}^{\mathbb{N}} \to X, Y$. A realizer $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ to a multivalued function on represented spaces $f :\subseteq (X, \delta_X) \rightrightarrows (Y, \delta_Y)$ is function such that the following diagram commutes.

Closed Choice: $C_X :\subseteq \mathcal{A}_-(X) \rightrightarrows X, X \mapsto X$ $C_2 \equiv_{sW} LLPO$

Compositional products:

 $f \ast g := \max\{f_0 \circ g_0 \mid f_0 \leq_{\mathsf{W}} f, g_0 \leq_{\mathsf{W}} g\}$

Algebraic operations:

Product $f \times g$, parallelization \hat{f} , etc.

Weak König's lemma

- WKL Weak König's lemma Every infinite 0/1-tree, has an infinite branch.
- DNC_k Diagonal non-computable function For every $p \in 2^{\mathbb{N}}$, there exists a diagonal non-computable function $f \colon \mathbb{N} \to k$, i.e., $f(n) \neq \phi_n^p(n)$.
 - PA Completion of Peano arithmetic For every p there is a Turing-degree d containing a completion of each p-computable theory.

Theorem (classical)

Computationally (non-uniform) the following are equivalent:

- WKL,
- DNC_k for any $k \in \mathbb{N}$,
- PA.

 $\mathsf{DNC}_{\mathbb{N}}$ is weaker.

WKL in the Weihrauch lattice

Theorem

$$\mathsf{WKL} \equiv_{\mathsf{sW}} \widehat{\mathsf{LLPO}}$$

Definition (ACC $_X$, all or co-unique choice)

$$\mathsf{ACC}_X :\subseteq \mathcal{A}_-(X) \rightrightarrows X, A \mapsto A$$

and dom(ACC_X) := {
$$A \in \mathcal{A}_{-}(X)$$
: $|X \setminus A| \le 1$ and $A \ne \emptyset$ }.

Theorem (Weihrauch, '92)

$$\mathsf{ACC}_{\mathbb{N}} <_{\mathsf{W}} \mathsf{ACC}_{n+1} <_{\mathsf{W}} \mathsf{ACC}_n <_{\mathsf{W}} \mathsf{ACC}_2 \equiv_{\mathsf{sW}} \mathsf{LLPO}$$

Theorem (Brattka, Hendtlass, K.)

$$\mathsf{DNC}_X \equiv_{\mathsf{sW}} \widehat{\mathsf{ACC}_X}$$

In particular, WKL $\equiv_{sW} \widehat{LLPO} \equiv_{sW} DNC_2$.

Theorem (Brattka, Hendtlass, K.)

 $\mathsf{ACC}_n \nleq_\mathsf{W} \mathsf{DNC}_{n+1}$

$\mathsf{DNC}_{\mathbb{N}} <_{\mathsf{W}} \mathsf{DNC}_{n+1} <_{\mathsf{W}} \mathsf{DNC}_n <_{\mathsf{W}} \mathsf{DNC}_2 \equiv_{\mathsf{sW}} \mathsf{WKL}$

Let
$$[p] := \{q \in \mathbb{N}^{\mathbb{N}} \mid p \equiv_{\mathsf{T}} q\}$$

Definition (Turing degrees, representation)

•
$$\mathcal{D} := \{ [p] \mid p \in \mathbb{N}^{\mathbb{N}} \}$$

•
$$\delta_{\mathcal{D}} \colon \mathbb{N}^{\mathbb{N}} \to \mathcal{D}, p \mapsto [p].$$

Observation

Turing degrees are invariant under finite modification of its members.

 $\delta_{\mathcal{D}}^{-1}(d)$ for $d \in \mathcal{D}$, is <u>dense</u>.

We call such spaces densely realized.

Densely realized

A multi-valued map $f :\subseteq X \rightrightarrows Y$ is called densely realized, if $\{ F(p) \mid F \vdash f \}$ is dense for all $p \in \text{dom}(f\delta_X)$.

Propositio<u>n</u>

If Y as above is densely realized, f is densely realized.

Theorem

If f is densely realized, then

$$ACC_{\mathbb{N}} \not\leq_{\mathsf{W}} f.$$

Proof: Continuity!

Property (1) is called ω -indiscriminative.

Corollary

 $\mathsf{PA} :\subseteq \mathcal{D} \rightrightarrows \mathcal{D}$ is ω -indiscriminative. Thus, $\mathsf{DNC}_{\mathbb{N}} \nleq_{\mathsf{W}} \mathsf{PA}$.

Other principles considered

- Weak weak König's lemma and Martin-Löf randomness
- Jump inversion theorem $\begin{aligned} \mathsf{JIT}:d\mapsto \{a\mid a'=d\cup \emptyset'\},\\ \mathsf{JIT}<_{\mathsf{sW}} c_{\emptyset'}\times id \end{aligned}$
- Kleene-Post theorem

Relates to (refines) other approaches:

Theorem (Relation to Medevdev reducibility)

For $f,g:\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$,

 $f \leq_{\mathsf{W}} g \Longrightarrow$

 $\forall p \in \operatorname{dom}(f) \cap \mathsf{COMP} \ \exists q \in \operatorname{dom}(g) \cap \mathsf{COMP}\left(f(p) \leq_{\mathsf{M}} g(q)\right).$

Our analysis of DNC_k refines work by Cenzer, Hinmann in Medevdev lattice.

Definition

 $f:\subseteq X\rightrightarrows Y \text{ is called}$

- indiscriminative if LLPO $\not\leq_W$ f,
- $\underline{\omega}$ -indiscriminative if ACC_N $\not\leq_W$ f.

Are indiscriminative principles useful?

No: Obviously do not compute much. Probably, the reason why most of recursion theory does not show up in analysis. WKL is an exception.

Yes: I will present some examples.

Reasons for being indiscriminative

- Computational weakness,
- Continuity,
- Densely realized,
 - Range is densely realized as space
 - Turing degrees \mathcal{D} ,
 - Derived spaces
 - Definition of the principle

Examples

• Weak Bolzano Weierstraß principle

$$\mathsf{WBWT}_{\mathbb{R}}:\subseteq \mathbb{R}^{\mathbb{N}}
ightarrow \mathbb{R}'$$

• Cohesive principle, (variants of) Baire category theorem

Cohesive principle

Definition

- Let $(R_i)_{i\in\mathbb{N}}\subseteq 2^{\mathbb{N}}$. A set $X\in 2^{\mathbb{N}}$ is called <u>cohesive</u> if
 - \bullet X is infinite.
 - $X \subseteq^* R_i$ or $X \subseteq^* \overline{R_i}$ for all i.
- $\operatorname{COH} :\subseteq (2^{\mathbb{N}})^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}}$

Proposition

COH is densely realized.

Proof: By definition.

Corollary

- COH is ω-indiscriminative.
- WKL ≰_W COH,
- $\mathsf{DNC}_{\mathbb{N}}, \mathsf{MLR} \not\leq_{\mathsf{W}} \mathsf{COH}.$

Theorem (K. '11)

 $WBWT_{\mathbb{R}} \equiv_W COH.$

Note: non-strong Weihrauch equivalence. There is a variant of $\mathsf{SBWT}_{\mathbb{R}}$ for which strong equivalence holds.

Proposition

 $\mathsf{BWT}_{\mathbb{R}} \equiv_{\mathsf{sW}} \lim \ast \mathsf{WBWT}_{\mathbb{R}} \equiv_{\mathsf{sW}} \lim \ast \mathsf{COH}$

Theorem (Brattka, Gherardi, Marcone '12; K.)

 $\mathsf{BWT}_{\mathbb{R}} \equiv_{\mathsf{sW}} \mathsf{WKL}' \equiv_{\mathsf{sW}} \mathsf{WKL} * \lim$

Cohesive principle and weak Bolzano-Weierstraß

 $\lim *COH \equiv_W WKL' \equiv_W BWT_{\mathbb{R}}$

Is COH optimal? Is there a weaker principle such that

Yes, COH is optimal.

Theorem

 $\mathsf{COH} \equiv_\mathsf{W} \lim \to \mathsf{WKL}'$

Side info on \rightarrow , (Brattka, Pauly '14)

 $f \mathop{\rightarrow} g := \min\{h \mid g \leq_{\mathsf{W}} f * h\}.$

- $f \rightarrow g$ is the weakest oracle for f needed to compute g.
- Exists always.

Algebraic characterization of COH

Degree variant of COH:

 $[\mathsf{COH}]:\subseteq \mathcal{D} \rightrightarrows \mathcal{D}$

Jump for degrees:

$$\mathsf{J}_{\mathcal{D}} \colon d \mapsto \{d'\}$$

Theorem (Jockusch, Stephan '93 (essentially))

 $[\mathsf{COH}] \equiv_\mathsf{W} \mathsf{J}_{\mathcal{D}}^{-1} \circ \mathsf{PA} \circ \mathsf{J}_{\mathcal{D}}.$

Note:

$$\mathsf{COH} \not\leq_{\mathsf{W}} \lim^{-1} * \mathsf{WKL} * \lim$$

Theorem

 $[\mathsf{COH}] \equiv_\mathsf{W} (\lim \to \mathsf{PA}') \equiv_\mathsf{W} (\mathsf{J}_\mathcal{D} \to \mathsf{PA}')$

Baire category theorem

Let X be a complete metric space.

Theorem (Baire category theorem)

Let $(A_i)_{i \in \mathbb{N}}$ be closed nowhere dense subsets of X.

$$\bigcup_{i\in\mathbb{N}}A_i\subsetneq X$$

Formulate as computational problem:

BCT₀ Given $(A_i)_{i \in \mathbb{N}}$ closed nowhere dense. There is an $x \in X \setminus \bigcup_{i \in \mathbb{N}} A_i$. BCT₀ : $\subseteq \mathcal{A}_{-}(X)^{\mathbb{N}} \rightrightarrows X$

 $\begin{array}{ll} \mathsf{BCT}_1 \ \ \mathsf{Given} \ (A_i)_{i\in\mathbb{N}} \ \mathsf{closed}, \ \mathsf{such} \ \mathsf{that} \ \bigcup_{i\in\mathbb{N}} A_i = X. \ \ \mathsf{There} \ \mathsf{is} \ \mathsf{an} \\ & \mathsf{index} \ i \ \mathsf{such} \ \mathsf{that} \ A_i \ \mathsf{is} \ \mathsf{somewhere} \ \mathsf{dense}. \end{array}$

 $\mathsf{BCT}_1:\subseteq \mathcal{A}_-(X)^{\mathbb{N}} \rightrightarrows \mathbb{N}$

 BCT_2 , BCT_3 are defined like BCT_0 and BCT_1 but with positive input.

Baire Category theorem (cont.)

		classical reverse mathematics		
BCT_0	computable	RCA ₀		
BCT_1	$\left \begin{array}{c} \text{computable with finitely many mind changes}\\ C_{\mathbb{N}} \end{array}\right RCA_0 + $			
BCT_2	computability theoretic version related to 1-generic, forcing	$\Pi^0_1 G$		
BCT_3	equivalent to cluster point problem	ACA ₀		
Space X has to be perfect (no isolated points.) E.g., $2^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$. Non perfect space:				
Proposition				

$$\mathsf{BCT}_2 \equiv_{\mathsf{sW}} id_0 \qquad \qquad \mathsf{BCT}_3 \equiv_{\mathsf{sW}} id_{\mathbb{N}}$$

In particular BCT_2 , BCT_3 are computable in this case.

Theorem (Brattka, Hendtlass, K.)

 BCT_i for a perfect polish space X is strong-Weihrauch equivalent to BCT_i for $\mathbb{N}^{\mathbb{N}}$.

Consider now only $X = \mathbb{N}^{\mathbb{N}}$.

Theorem (Brattka '01, Brattka, Gherardi '11)

- $C_{\mathbb{N}} \equiv_{sW} BCT_1$,
- $CL_{\mathbb{N}} \equiv_{sW} BCT_3 \equiv_{sW} BCT'_1$.

 BCT_1 , BCT_3 are discriminative.

Theorem (Brattka, Hendtlass, K.)

- BCT₀, BCT₂ are densely realized and hence ω-indiscriminative.
- $\mathsf{BCT}_0' \equiv_{\mathsf{sW}} \mathsf{BCT}_2$.

Proof of $\mathsf{BCT}_2 \equiv_{\mathsf{sW}} \mathsf{BCT}_0'$ and $\mathsf{BCT}_3 \equiv_{\mathsf{sW}} \mathsf{BCT}_1'$

Representations:

negative information	$\mathcal{A}_{-}, \phi_{-}$	Enumerate balls in complement
positive information	\mathcal{A}_+, ϕ_+	Closure of points
cluster point	\mathcal{A}_*, ϕ_*	Cluster points of points

Proposition

$$id_{+-} \colon \mathcal{A}_+(X) \to \mathcal{A}_-(X) \leq_{\mathsf{sW}} \lim$$

Gives $\mathsf{BCT}_2 \leq_{\mathsf{sW}} \mathsf{BCT}_0'$ and $\mathsf{BCT}_3 \leq_{\mathsf{sW}} \mathsf{BCT}_1'$.

Proposition (Brattka, Gherardi, Marcone '12)

 $id: \mathcal{A}_*(X) \to \mathcal{A}_-(X)'$ is a computable isomorphism.

Proposition

There is an $M :\subseteq \mathcal{A}_*(X) \rightrightarrows \mathcal{A}_+(X)$ such that,

•
$$M(A) \subseteq \{B \colon A \subseteq B\}$$

• A nowhere dense $\Rightarrow B \in M(A)$ nowhere dense. (X perfect)

1-generic

A point $p \in 2^{\mathbb{N}}$ is 1-generic relative to q if it meets or avoids any c.e. open set U_i^q , i.e.,

$$\exists w \sqsubseteq p \ \left(w2^{\mathbb{N}} \subseteq U_i^q \text{ or } w2^{\mathbb{N}} \cap U_i^q = \emptyset\right).$$

Equivalently: $p \notin \partial U_i^q$

Theorem

 $\mathsf{BCT}_0 \leq_{\mathsf{sW}} 1\text{-}\mathsf{GEN} \leq_{\mathsf{sW}} \mathsf{BCT}_2$

Proof.

• For nowhere dense A, $A = \partial A = \partial A^c$.

$$\mathsf{BCT}_0 = 2^{\mathbb{N}} \setminus \bigcup_{i=0}^{\infty} A_i = \bigcap_{i=0}^{\infty} (2^{\mathbb{N}} \setminus \partial A_i^c)$$

Now $A_i^c = U_j^q$ for a suitable j. Thus, BCT₀ \leq_{sW} 1-GEN. 2 Use BCT₂ \equiv_{sW} BCT₀ and compute $(U_i^q)^c$ in the limit.

1-generic (cont.)

Theorem

 $BCT_0 <_{sW} 1$ -GEN $<_{sW} BCT_2$ (The implications are strict.)

Proof sketch.

- Sufficient to use a weakly 1-generic in the previous proof.
 Apply the fact that there are weakly 1-generics that are not 1-generic.
- ② (Uniform) Theorem of Kurtz shows that 1-GEN $≤_{sW}$ WWKL'.^a

Lemma of Kučera shows that WWKL' can be realized such that its output is low for $\Omega.$

There is a computable p such that $BCT_2(p)$ is not low for Ω .

Thus, $BCT_2 \not\leq_W WWKL'$.

^aActually, (1 - *)-WWKL'

Definition (Π_1^0 G, classical reverse math)

Let $D_i \subseteq 2^{<\mathbb{N}}$ be a sequence of dense, uniformly Π_1^0 -set. There is a set $G \subseteq 2^{\mathbb{N}}$ meeting each D_i , i.e., $\exists s \in D_i \ (s \sqsubseteq G)$.

 $\Pi^0_1 \mathsf{G}$ related to forcing constructions.

Formulation in the Weihrauch lattice: Model properties of ${\cal D}_i$ using a suitable representation

Definition

$$\phi_{\#}(p) = D : \iff \phi_{-}(p) = E \text{ and } A = 2^{\mathbb{N}} \setminus \bigcup_{w \in E} w 2^{\mathbb{N}},$$

where $E \subseteq 2^{<\mathbb{N}}$.

Definition (Π_1^0 G, Weihrauch version)

$$\Pi^0_1\mathsf{G}:\subseteq\mathcal{A}_{\#}(2^{\mathbb{N}})^{\mathbb{N}}\rightrightarrows 2^{\mathbb{N}}$$

$$(D_i)_i \mapsto \bigcap 2^{\mathbb{N}} \setminus D_i,$$

with dom $(\Pi_1^0 \mathsf{G}) := \{ (A_i)_i \mid A_i^\circ = \emptyset \}.$

Proposition

 $\mathrm{id} \colon \mathcal{A}_{-}(2^{\mathbb{N}})' \to \mathcal{A}_{\#}(2^{\mathbb{N}}) \text{ is a computable isomorphism}.$

Corollary

 $\Pi_1^0 \mathsf{G} \equiv_{\mathsf{sW}} \mathsf{BCT}_0' \equiv_{\mathsf{sW}} \mathsf{BCT}_2$

- Characterization of DNC_k as parallelization of weak omnisience principle ACC_k.
- Algebraic characterization of COH $\equiv_W \lim \to \mathsf{WKL'}.$
- Calculus characterization of $\Pi^0_1 {\sf G}.$

Thank you for your attention!

V. Brattka, M. Hendtlass, A. Kreuzer, On the Uniform Computational Content of Computability Theory arXiv:1501.00433

V. Brattka, M. Hendtlass, A. Kreuzer On the Uniform Computational Content of Baire Category Theorem