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Weihrauch lattice

Weihrauch reduction: Let f, g :⊆ NN → NN

f ≤W g iff ∃K,H :⊆ NN → N computable (f = H〈id, gK〉)

K // ��g H //

Strong variant:

f ≤sW g iff ∃K,H :⊆ NN → N computable (f = HgK)

K // g H //



Mutlivalued functions

Let f, g :⊆ NN ⇒ NN be multivalued.

Definition
F :⊆ NN → NN realizes f iff

F (x) ∈ f(x) for all x ∈ dom(f).

Write F ` f .

f ≤W g if
∃K,H ∀G ` g

(
H〈id, GK〉 ` f

)
.

Same for ≤sW.



Represented Spaces

Spaces X,Y are represented by surjective function δX , δY :⊆ NN → X,Y .
A realizer F :⊆ NN → NN to a multivalued function on represented spaces
f :⊆ (X, δX) ⇒ (Y, δY ) is function such that the following diagram
commutes.

NN F //

δX����

NN

δY����
X

f // Y



Examples

Closed Choice:
CX :⊆ A−(X) ⇒ X,X 7→ X

C2 ≡sW LLPO

Compositional products:
f ∗ g := max{f0 ◦ g0 | f0 ≤W f, g0 ≤W g}

Algebraic operations:
Product f × g, parallelization f̂ , etc.



Weak König’s lemma

WKL Weak König’s lemma
Every infinite 0/1-tree, has an infinite branch.

DNCk Diagonal non-computable function
For every p ∈ 2N, there exists a diagonal non-computable
function f : N→ k, i.e., f(n) 6= φpn(n).

PA Completion of Peano arithmetic
For every p there is a Turing-degree d containing a
completion of each p-computable theory.

Theorem (classical)
Computationally (non-uniform) the following are equivalent:

WKL,
DNCk for any k ∈ N,
PA.

DNCN is weaker.



WKL in the Weihrauch lattice

Theorem

WKL ≡sW L̂LPO

Definition (ACCX , all or co-unique choice)

ACCX :⊆ A−(X) ⇒ X,A 7→ A

and dom(ACCX) := {A ∈ A−(X) : |X \A| ≤ 1 and A 6= ∅}.

Theorem (Weihrauch, ’92)

ACCN <W ACCn+1 <W ACCn <W ACC2 ≡sW LLPO

Theorem (Brattka, Hendtlass, K.)

DNCX ≡sW ÂCCX

In particular, WKL ≡sW L̂LPO ≡sW DNC2.



WKL in the Weihrauch lattice (cont.)

Theorem (Brattka, Hendtlass, K.)

ACCn �W DNCn+1

DNCN <W DNCn+1 <W DNCn <W DNC2 ≡sW WKL



Turing degrees as represented spaces

Let [p] := {q ∈ NN | p ≡T q}

Definition (Turing degrees, representation)
D := { [p] | p ∈ NN },
δD : NN → D, p 7→ [p].

Observation
Turing degrees are invariant under finite modification of its members.

δ−1
D (d) for d ∈ D, is dense.

We call such spaces densely realized.



Densely realized
A multi-valued map f :⊆ X ⇒ Y is called densely realized, if
{ F (p) | F ` f } is dense for all p ∈ dom(fδX).

Proposition
If Y as above is densely realized, f is densely realized.

Theorem
If f is densely realized, then

ACCN �W f. (1)

Proof: Continuity! �.

Property (1) is called ω-indiscriminative.

Corollary
PA :⊆ D ⇒ D is ω-indiscriminative. Thus, DNCN �W PA.
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Other principles considered

Weak weak König’s lemma and Martin-Löf randomness
Jump inversion theorem

JIT : d 7→ {a | a′ = d ∪ ∅′},
JIT <sW c∅′ × id

Kleene-Post theorem

Relates to (refines) other approaches:

Theorem (Relation to Medevdev reducibility)
For f, g :⊆ NN ⇒ NN,

f ≤W g =⇒

∀p ∈ dom(f) ∩ COMP ∃q ∈ dom(g) ∩ COMP
(
f(p) ≤M g(q)

)
.

Our analysis of DNCk refines work by Cenzer, Hinmann in Medevdev
lattice.



Indiscriminative

Definition
f :⊆ X ⇒ Y is called

indiscriminative if LLPO �W f,
ω-indiscriminative if ACCN �W f.

Are indiscriminative principles useful?

No: Obviously do not compute much.
Probably, the reason why most of recursion theory does not
show up in analysis.
WKL is an exception.

Yes: I will present some examples.



Reasons for being indiscriminative

Computational weakness,
Continuity,
Densely realized,

Range is densely realized as space
Turing degrees D,
Derived spaces

Definition of the principle

Examples
Weak Bolzano Weierstraß principle

WBWTR :⊆ RN ⇒ R′

Cohesive principle, (variants of) Baire category theorem



Cohesive principle

Definition
Let (Ri)i∈N ⊆ 2N. A set X ∈ 2N is called cohesive if

X is infinite.
X ⊆∗ Ri or X ⊆∗ Ri for all i.

COH :⊆ (2N)N ⇒ 2N

Proposition
COH is densely realized.

Proof: By definition. �

Corollary
COH is ω-indiscriminative.
WKL �W COH,
DNCN,MLR �W COH.



Cohesive principle and weak Bolzano-Weierstraß

Theorem (K. ’11)
WBWTR ≡W COH.

Note: non-strong Weihrauch equivalence. There is a variant of SBWTR
for which strong equivalence holds.

Proposition
BWTR ≡sW lim ∗WBWTR ≡sW lim ∗COH

Theorem (Brattka, Gherardi, Marcone ’12; K.)
BWTR ≡sW WKL′ ≡sW WKL ∗ lim



Cohesive principle and weak Bolzano-Weierstraß

lim ∗COH ≡W WKL′ ≡W BWTR
Is COH optimal? Is there a weaker principle such that

lim ∗ ? ≡W WKL′

Yes, COH is optimal.

Theorem
COH ≡W lim→WKL′

Side info on →, (Brattka, Pauly ’14)
f→ g := min{h | g ≤W f ∗ h}.

f→ g is the weakest oracle for f needed to compute g.
Exists always.

Algebraic characterization of COH



Cohesive degrees

Degree variant of COH:
[COH] :⊆ D ⇒ D

Jump for degrees:
JD : d 7→ {d′}

Theorem (Jockusch, Stephan ’93 (essentially))
[COH] ≡W J−1

D ◦ PA ◦ JD.

Note:
COH �W lim−1 ∗WKL ∗ lim

Theorem
[COH] ≡W (lim→PA′) ≡W (JD→PA′)



Baire category theorem

Let X be a complete metric space.

Theorem (Baire category theorem)
Let (Ai)i∈N be closed nowhere dense subsets of X.⋃

i∈N
Ai ( X

Formulate as computational problem:
BCT0 Given (Ai)i∈N closed nowhere dense. There is an

x ∈ X \
⋃
i∈NAi.

BCT0 :⊆ A−(X)N ⇒ X

BCT1 Given (Ai)i∈N closed, such that
⋃
i∈NAi = X. There is an

index i such that Ai is somewhere dense.
BCT1 :⊆ A−(X)N ⇒ N

BCT2, BCT3 are defined like BCT0 and BCT1 but with positive input.



Baire Category theorem (cont.)
classical reverse
mathematics

BCT0 computable RCA0

BCT1
computable with finitely many mind changes
CN

RCA0 + BCTII

BCT2
computability theoretic version
related to 1-generic, forcing Π0

1G

BCT3 equivalent to cluster point problem ACA0

Space X has to be perfect (no isolated points.) E.g., 2N, NN.
Non perfect space:

Proposition

BCT2 ≡sW id0 BCT3 ≡sW idN

In particular BCT2, BCT3 are computable in this case.
The equivalence between Π0

1G and BCT2 is non-trivial.



Baire Category theorem

Theorem (Brattka, Hendtlass, K.)
BCTi for a perfect polish space X is strong-Weihrauch equivalent
to BCTi for NN.

Consider now only X = NN.

Theorem (Brattka ’01, Brattka, Gherardi ’11)
CN ≡sW BCT1,
CLN ≡sW BCT3 ≡sW BCT′1.

BCT1, BCT3 are discriminative.

Theorem (Brattka, Hendtlass, K.)
BCT0, BCT2 are densely realized and hence ω-indiscriminative.
BCT′0 ≡sW BCT2.



Proof of BCT2 ≡sW BCT′0 and BCT3 ≡sW BCT′1
Representations:
negative information A−, φ− Enumerate balls in complement
positive information A+, φ+ Closure of points
cluster point A∗, φ∗ Cluster points of points

Proposition
id+− : A+(X)→ A−(X) ≤sW lim

Gives BCT2 ≤sW BCT′0 and BCT3 ≤sW BCT′1.

Proposition (Brattka, Gherardi, Marcone ’12)
id : A∗(X)→ A−(X)′ is a computable isomorphism.

Proposition
There is an M :⊆ A∗(X) ⇒ A+(X) such that,

M(A) ⊆ {B : A ⊆ B}
A nowhere dense ⇒ B ∈M(A) nowhere dense. (X perfect)



1-generic

A point p ∈ 2N is 1-generic relative to q if it meets or avoids any c.e. open
set U qi , i.e.,

∃w v p
(
w2N ⊆ U qi or w2N ∩ U qi = ∅

)
.

Equivalently: p /∈ ∂U qi

Theorem
BCT0 ≤sW 1-GEN ≤sW BCT2

Proof.
1 For nowhere dense A, A = ∂A = ∂Ac.

BCT0 = 2N \
⋃∞
i=0
Ai =

⋂∞
i=0

(2N \ ∂Aci )

Now Aci = U qj for a suitable j. Thus, BCT0 ≤sW 1-GEN.
2 Use BCT2 ≡sW BCT′0 and compute (U qi )c in the limit.



1-generic (cont.)

Theorem
BCT0 <sW 1-GEN <sW BCT2
(The implications are strict.)

Proof sketch.
1 Sufficient to use a weakly 1-generic in the previous proof.

Apply the fact that there are weakly 1-generics that are not 1-generic.
2 (Uniform) Theorem of Kurtz shows that 1-GEN ≤sW WWKL′.a

Lemma of Kučera shows that WWKL′ can be realized such that its
output is low for Ω.
There is a computable p such that BCT2(p) is not low for Ω.
Thus, BCT2 �W WWKL′.

aActually, (1− ∗)-WWKL′



Π0
1G

Definition (Π0
1G, classical reverse math)

Let Di ⊆ 2<N be a sequence of dense, uniformly Π0
1-set. There is a set

G ⊆ 2N meeting each Di, i.e., ∃s ∈ Di (s v G).

Π0
1G related to forcing constructions.

Formulation in the Weihrauch lattice: Model properties of Di using a
suitable representation

Definition
φ#(p) = D :⇐⇒ φ−(p) = E and A = 2N \

⋃
w∈E w2N,

where E ⊆ 2<N.

Definition (Π0
1G, Weihrauch version)

Π0
1G :⊆ A#(2N)N ⇒ 2N (Di)i 7→

⋂
2N \Di,

with dom(Π0
1G) := {(Ai)i | A◦i = ∅}.



Π0
1G (cont.)

Proposition
id : A−(2N)′ → A#(2N) is a computable isomorphism.

Corollary
Π0

1G ≡sW BCT′0 ≡sW BCT2



CLR ≡sW C′R
CLN ≡sW BCT′1 ≡sW BCT3

lim ≡sW J

limJ

lim∆

L ≡sW J −1 ◦ lim

CR

(1− ∗)-WWKL′

1-GEN

1-WGEN

BCT0

BCT′0 ≡sW Π0
1GCN ≡sW BCT1

LPO

C2 ≡sW LLPO id



What more do we see in the Weihrauch lattice?

Characterization of DNCk as parallelization of weak omnisience
principle ACCk.
Algebraic characterization of COH ≡W lim→WKL′.
Calculus characterization of Π0

1G.



Thank you for your attention!
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