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Program extraction

RCAω
0 + RT2

2 ` ∀x ∃y A(x, y)

extract a term t, such that

∀xA(x, t(x)).

Here A(x, y) is quantifier-free.
RCAω

0 is the finite type extension of RCA0:
Sorted into type 0 for N, type 1 for NN, type 2 for NNN , . . . ,
contains basic arithmetic (+,·), λ-abstraction,
quantifier-free axiom of choice for numbers, i.e. the statement that
definable functions of natural numbers exist,
and a recursor R0, which provides primitive recursion (for numbers),
Σ0

1-induction.
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Program extraction
via reduction to arithmetical comprehension

RCAω
0 + RT2

2 ` ∀x ∃y A(x, y)

implies
RCAω

0 + Π0
1-CA ` ∀x ∃y A(x, y).

Functional interpretation extracts a term t
primitive recursive in the bar recursor B0,1,
such that

∀xA(x, t(x)).

Howard’s ordinal analysis of the bar recursor shows that t
is provably total relative to Π0

∞-induction.
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Functional interpretation of RT2
2

Formalization of RT2
2

∀c : [N]2 → 2 ∃H = {h0, h1, . . . }
∀x, y (x 6= y → c({hx, hy}) = c({h0, h1}))

Functional interpretation:

∀c ∃H1 ∀x0, y0 (x 6= y → c({hx, hy}) = c({h0, h1}))

functional interpretation of RT2
2

∀c∀X2, Y 2 ∃H1 (X(H) 6=Y (H)
→ c({hX(H), hY (H)}) = c({h0, h1}))

A functional R3(c,X, Y ) yielding such an H is called a
solution-functional of the functional interpretation of RT2

2.
A. Kreuzer (TU Darmstadt) Ramsey’s theorem and program extraction Bertinoro, May 2011 4 / 17



RCAω
0 + RT2

2 ` ∀x ∃y A(x, y)

Applying the functional interpretation directly yields a term t
primitive recursive in a solution-functional R of the functional
interpretation of RT2

2, such that

∀xA(x, t(x))
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The term t is made of
+, ·,
the primitive recursor R0, i.e.

R0(0, y, f) = y, R0(x+ 1, y, f) = f(R0(x, y, f), x).

λ-abstraction and
the solution functional R.

With coding R0 is of type 2, R is of type 3.
⇒ No iteration functional for R.
R is only used to build type 2 objects.

Lemma
The term t can be normalized, such that each occurrence of R is of the
form

R(t0[g], t1[g], t2[g])

for terms ti containing only g : N→ N free. This g can be chosen such
that it is the same for each application.
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How to interpret ∀gR(t0[g], t1[g], t2[g]) ?

Goal: Show that a restricted use of Π0
1-CA suffices to interpret t.

Full Π0
1-CA:

Π0
1-CA : ∀f ∃X ∀k (k ∈ X ↔ ∀n f(k, n) 6= 0) .

Instance of Π0
1-CA:

Π0
1-CA(f) : ∃X ∀k (k ∈ X ↔ ∀n f(k, n) 6= 0) .

RCAω
0 + Π0

1-CA ` IΠ0
∞

RCAω
0 +

[
Π0

1-CA(t) for all closed terms t
]
` light-face-IΣ0

2
For closed terms t:
RCAω

0 + Π0
1-CA(t) 0 IΣ0

3
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Theorem
For all f there exists an f ′, such that

uWKLω
0 ` ∀c : [N]2 → 2

(
Π0

1-CA(f ′(c))

→∃H
(
H infinite and homogeneous for c ∧ Π0

1-CA(f(c,H))
))

uWKLω
0 is roughly RCAω

0 plus a uniformisation of WKL
This theorem implies low2-ness of RT2

2
For computable c it follows that
0′ plus WKL computes H and H ′.
By the low basis theorem (Jockusch, Soare)
then 0′′ computes H ′′. Hence H is low2.

The proof of this theorem is based on Cholak’s, Jockusch’s and
Slaman’s proof (by first jump control) of the low2-ness of RT2

2.
Finitely nested uses of instances of RT2

2 are implied by a suitable
single instance of Π0

1-CA having the same parameters.
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Interpreting t

Lemma
There exists an f , such that
uWKLω

0 and the functional interpretation of ∀g, x Π0
1-CA(f(g, x))

proves that
1 t is total,
2 ∀xA(x, t(x)).

Proof.
Normalize t such that it contains only finitely many R applications of the
form R(t0[g], t1[g], t2[g]).

1 Replace the applications of R with he functional interpretation of the
last theorem.

2 Replace each occurrence of R in the proof of ∀xA(x, t(x)) by this
interpretation.
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Theorem (K., Kohlenbach)

RCAω
0 + RT2

2 ` ∀x ∃y A(x, y)

then one can extract a term t provably total in RCAω
0 + IΣ0

2 such that

RCAω
0 + IΣ0

2 ` ∀xA(x, t(x))

Proof.
Use functional interpretation to extract a term t
primitive recursive in R, such that ∀xA(x, t(x)).
Normalize t. Replace the occurrence of R to obtain a proof in
uWKLω

0 + the functional interpretation of Π0
1-CA(f(g, x)).

Solve the functional interpretation of Π0
1-CA(f(g, x)) with

a single use of the bar recursor B0,1.
Kohlenbach’s elimination of WKL and
Howard’s analysis of the bar recursor yield the result.
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Theorem (K., Kohlenbach)

RCAω
0 + IΣ0

2 + RT2
2 ` ∀x ∃y A(x, y)

then one can extract a term t provably total in RCAω
0 + IΣ0

2 such that

RCAω
0 + IΣ0

2 ` ∀xA(x, t(x))

Proof.
Use functional interpretation to extract a term t
primitive recursive in R and the recursor R1, such that ∀xA(x, t(x)).
Normalize t. Replace the occurrence of R and R1 to obtain a proof in
uWKLω

0 + the functional interpretation of Π0
1-CA(f(g, x)).

Solve the functional interpretation of Π0
1-CA(f(g, x)) with

a single use of the bar recursor B0,1.
Kohlenbach’s elimination of WKL and
Howard’s analysis of the bar recursor yield the result.
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Theorem (K., Kohlenbach)

WKLω
0 + IΣ0

2 + RT2
2 ` ∀x ∃y A(x, y)

then one can extract a term t provably total in RCAω
0 + IΣ0

2 such that

RCAω
0 + IΣ0

2 ` ∀xA(x, t(x))

Proof.
Use functional interpretation to extract a term t
primitive recursive in R and the recursor R1 and the restricted bar
recursor ΦWKL for WKL, such that ∀xA(x, t(x)).
Normalize t. Replace the occurrence of R and R1 to obtain a proof in
uWKLω

0 + the functional interpretation of Π0
1-CA(f(g, x)). Use

Howard’s analysis of the restricted bar recursor to interpret ΦWKL.
Solve the functional interpretation of Π0

1-CA(f(g, x)) with
a single use of the bar recursor B0,1.
Kohlenbach’s elimination of WKL and
Howard’s analysis of the bar recursor yield the result.
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Proofwise low
This is a general concept:
Call a principle P of the form

∀X ∃Y P ′(X,Y )

proofwise low over a system T if
for all f exists an f ′, such that

T ` ∀X
(

Π0
1-CA(f ′(X))→∃Y

(
P ′(X,Y ) ∧ Π0

1-CA(f(X,Y ))
))
.

Theorem (K., Kohlenbach)
If P is proofwise low over WKLω

0 and P ′ is Π0
1 then

WKLω
0 + IΣ0

2 + P

is Π0
3-conservative and admits term extraction over the system

RCAω
0 + IΣ0

2.
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Let WKLω
0
∗ be the system WKLω

0 where IΣ0
1 and R0 is replaced

by IΣ0
0, 2x and bounded primitive recursion.

Theorem (K.)
If P is proofwise low over WKLω

0
∗ and P ′ is Π0

1 then

WKLω
0 +BΣ0

2 + P

is Π0
3-conservative and admits extraction of primitive recursive terms over

the system
RCAω

0 .

Proof.
Use a refinement of Howard’s ordinal analysis.
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The chain antichain principle

Definition
Let the chain antichain principle (CAC) be that statement the each partial
order over N possesses an infinite chain or an infinite antichain.

Lemma (Cholak, Jockusch, Slaman)

RCA0 ` RT2
2→CAC
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The chain antichain principle

Theorem (Chong, Slaman, Yang)

RCA0 +BΣ0
2 + CAC

is Π1
1-conservative over

RCA0 +BΣ0
2.

Theorem (K.)
The chain antichain principle is proofwise low over WKLω

0
∗.

Hence
WKLω

0 +BΣ0
2 + CAC

is Π0
3-conservative over

RCAω
0 .

Moreover primitive recursive terms can be extracted for ∀∃ sentences.
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Connections to the Bolzano-Weierstraß principle
The chain antichain principle implies the following variant of the Bolzano
Weierstraß principle:

Each bounded sequence in R contains a Cauchy-subsequence.

Compare to the reverse mathematics formulation of the
Bolzano-Weierstraß principle:

Each bounded sequence in R contains a converging subsequence,
i.e. a Cauchy-subsequence with Cauchy-rate 2−n.

Theorem (K.)
RCA0 proves that the strong cohesive principle (COH +BΣ0

2) is
equivalent to our variant of the Bolzano-Weierstraß principle.
ADS is equivalent to the stronger statement that
each sequence of real numbers contains a monotone subsequence.
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Summary

We introduced the notion of proofwise low.
This is a refinement of low2-ness.
Program extraction and conservativity results for proofwise low
principles.
Application to RT2

2 and CAC:
Extraction of terms of Ackermann type resp. primitive recursive terms.
New proof for the facts that RT2

2 does not imply more than
Ackermannian growth and
that CAC does not imply Σ0

2-induction.
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