Ramsey's theorem for pairs and provable recursive functions

Alexander Kreuzer (joint work with Ulrich Kohlenbach)

TU Darmstadt

RaTLoCC 2009

A. Kreuzer (TU Darmstadt)

RT² and provable recursive functions

RaTLoCC 2009 1 / 20

Outline

Introduction

- Reverse Mathematics
- Strength of Ramsey's theorem

2 Theorem

- Elimination of Skolem functions for monotone formulas
- Comparison of proof-techniques

3 Recent work

A. Kreuzer (TU Darmstadt)

Ramsey's Theorem

Let $[\mathbb{N}]^k$ be the set of unordered *k*-tuples of natural numbers. A *n*-coloring of $[\mathbb{N}]^k$ is a map of $[\mathbb{N}]^k$ into **n**.

Definition (RT_n^k)

For every *n*-coloring of $[\mathbb{N}]^k$ exists an infinite *homogeneous* set $H \subseteq \mathbb{N}$ (i.e. the coloring is constant on $[H]^k$).

Lemma

$$\operatorname{RT}_{n}^{k} \leftrightarrow \operatorname{RT}_{n'}^{k}$$
 for all $n, n' \in \mathbb{N} \setminus \{1\}$.

 $\operatorname{RT}_{<\infty}^k$ is defined as $\forall n \operatorname{RT}_n^2$.

過 ト イ ヨ ト イ ヨ ト ニ ヨ

Reverse Mathematics

Seeks to find which axioms over seconder order arithmetic are needed to prove theorems. Usually consider the *big five* subsystems of second order arithmetic:

 $RCA_0 \Sigma_1^0$ -IA + recursive comprehension 1st order part: Σ_1^0 -induction 2nd order part: recursive sets WKL₀ $RCA_0 + Weak$ Königs Lemma 1st order part: like RCA_0 2nd order part: low sets $ACA_0 RCA_0 + arithmetic comprehension$ 1st order part: arithmetic induction 2nd order part: arithmetic sets (includes WKL) $ATR_0 ACA_0 + arithmetical transfinite recursion$ Π_1^1 -CA₀ ACA₀ + Π_1^1 -comprehension

Weaker systems:

 RCA_0^* QF-IA + recursive comprehension + exponential function WKL_0^* RCA_0^* + Weak Königs Lemma

Reverse Mathematics

Seeks to find which axioms over seconder order arithmetic are needed to prove theorems. Usually consider the *big five* subsystems of second order arithmetic:

 $RCA_0 \Sigma_1^0$ -IA + recursive comprehension 1st order part: Σ_1^0 -induction 2nd order part: recursive sets WKL₀ RCA_0 + Weak Königs Lemma 1st order part: like RCA_0 2nd order part: low sets $ACA_0 RCA_0 + arithmetic comprehension$ 1st order part: arithmetic induction 2nd order part: arithmetic sets (includes WKL)

Weaker systems:

 $\begin{array}{c} {\rm RCA}_0^* \ {\rm QF-IA} + {\rm recursive \ comprehension} + {\rm exponential \ function} \\ {\rm WKL}_0^* \ {\rm RCA}_0^* + {\rm Weak \ K\"{o}nigs \ Lemma} \end{array}$

A. Kreuzer (TU Darmstadt)

 RT^2 and provable recursive functions

RaTLoCC 2009 4 / 20

Strength of Ramsey's theorem

- RT_n^1 is derivable in pure logic.
- $\operatorname{RT}^1_{<\infty}$ is the infinite pigeonhole principle.

 $RT^1_{<\infty} \leftrightarrow \Pi^0_1\text{-}CP$

 $\Pi^0_3\text{-}\mathsf{conservative}$ over $\mathrm{RCA}_0.$ (Hirst, Friedman) Especially $\mathrm{RT}^1_{<\infty}$ cause only primitive recursive growth.

 $\mathrm{RT}_n^k \leftrightarrow \mathrm{ACA}_0$

for $k \geq 3$ and $n \geq 2$. (Simpson)

٥

Strength of Ramsey's theorem for pairs

Theorem (Hirst)

- $\operatorname{RT}_2^2 \to \Pi_1^0$ -CP
- $\operatorname{RT}^2_{<\infty} \to \Pi^0_2$ -CP

Theorem (Jockusch)

There exists a computable coloring, which has no in 0' computable infinite homogeneous set. Especially $WKL_0 \nvDash RT_2^2$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Strength of Ramsey's theorem for pairs

Theorem (Hirst)

- $\operatorname{RT}_2^2 \to \Pi_1^0$ -CP
- $\operatorname{RT}^2_{<\infty} \to \Pi^0_2$ -CP

Theorem (Jockusch)

There exists a computable coloring, which has no in 0' computable infinite homogeneous set. Especially $WKL_0 \nvDash RT_2^2$.

通 ト イ ヨ ト イ ヨ ト

Theorem (Cholak, Jockusch, Slaman)

- Every computable coloring has an infinite homogeneous H set which is low₂, i.e. H" ≤_T 0".
- RCA₀ + Σ₂⁰-IA + RT₂²
 is Π₁¹-conservative over RCA₀ + Σ₂⁰-IA.
- WKL₀ + Σ₃⁰-IA + RT²_{<∞} is Π₁¹-conservative over RCA₀ + Σ₃⁰-IA.

Question (Cholak, Jockusch, Slaman)

Does RT²₂ imply Σ⁰₂-IA or the totality of the Ackermann-Function?
Does RT²_{<∞} imply Σ⁰₃-IA?

We show

```
WKL_0^* + instances \text{ of } RT_2^2 + instances \text{ of } \Sigma_1^0\text{-IA}
```

does not prove the totality of the Ackermann-Function.

Theorem (Cholak, Jockusch, Slaman)

- Every computable coloring has an infinite homogeneous H set which is low₂, i.e. H" ≤_T 0".
- RCA₀ + Σ₂⁰-IA + RT₂²
 is Π₁¹-conservative over RCA₀ + Σ₂⁰-IA.
- WKL₀ + Σ₃⁰-IA + RT²_{<∞} is Π₁¹-conservative over RCA₀ + Σ₃⁰-IA.

Question (Cholak, Jockusch, Slaman)

Does RT²₂ imply Σ⁰₂-IA or the totality of the Ackermann-Function?
Does RT²_{<∞} imply Σ⁰₃-IA?

We show

$WKL_0^* + instances of RT_2^2 + instances of \Sigma_1^0-IA$

does not prove the totality of the Ackermann-Function.

Theorem (Cholak, Jockusch, Slaman)

- Every computable coloring has an infinite homogeneous H set which is low₂, i.e. H" ≤_T 0".
- RCA₀ + Σ₂⁰-IA + RT₂²
 is Π₁¹-conservative over RCA₀ + Σ₂⁰-IA.
- WKL₀ + Σ₃⁰-IA + RT²_{<∞} is Π₁¹-conservative over RCA₀ + Σ₃⁰-IA.

Question (Cholak, Jockusch, Slaman)

Does RT²₂ imply Σ⁰₂-IA or the totality of the Ackermann-Function?
Does RT²_{<∞} imply Σ⁰₃-IA?

We show

```
WKL_0^* + instances of RT_2^2 + instances of \Sigma_1^0-IA
```

does not prove the totality of the Ackermann-Function.

A. Kreuzer (TU Darmstadt)

Main Result

For a schema S let S^- denote the schema restricted to instances which only have number parameters.

Theorem (K., Kohlenbach)

For every fixed \boldsymbol{n}

```
G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0 - CA^- + RT_n^2
```

is

- Π_2^0 -conservative over PRA,
- Π_3^0 -conservative over $\mathrm{PRA} + \Sigma_1^0$ -IA and
- Π_4^0 -conservative over PRA + Π_1^0 -CP.

Grzegorczyk Arithmetic in all finite types $(G_{\infty}A^{\omega})$

Corresponds to the (full) Grzegorczyk hierarchy. Contains

- quantifier free induction,
- bounded primitive recursion with function parameters,
- all primitive recursive functions,
- but not all primitive recursive functionals. The function iterator is not contained.

Remark

The system RCA^*_0 can be embedded into $\mathrm{G}_3\mathrm{A}^\omega+\mathrm{QF} ext{-AC}.$

Grzegorczyk Arithmetic in all finite types $(G_{\infty}A^{\omega})$

Corresponds to the (full) Grzegorczyk hierarchy. Contains

- quantifier free induction,
- bounded primitive recursion with function parameters,
- all primitive recursive functions,
- but not all primitive recursive functionals. The function iterator is not contained.

Remark

The system RCA_0^* can be embedded into $G_3A^\omega+QF\text{-}AC.$

 $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_{1}^{0}-CA^{-}$

Lemma

 $G_{\infty}A^{\omega} + QF\text{-}AC + WKL + \Pi_1^0\text{-}CA^-$ proves

- Π_1^0 -IA⁻, Σ_1^0 -IA⁻,
- Π^0_1 -AC⁻, Π^0_1 -CP⁻,
- Σ_1^0 -WKL⁻,
- BW⁻ (instances of Bolzano-Weierstrass).

All these principles cannot be nested.

Proof

Theorem

For every fixed \boldsymbol{n}

$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0 - CA^- + RT_n^2$$

is

- Π_2^0 -conservative over PRA,
- $\Pi_3^0\mbox{-}conservative over <math display="inline">PRA+\Sigma_1^0\mbox{-}IA$ and
- Π_4^0 -conservative over PRA + Π_1^0 -CP.

Proof.

3 Show
$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$$
 proves $RT_n^2^-$

2 Use elimination of Skolem functions to obtain conservation result.

A I > A I > A

Reduction step

Analyze Erdős' and Rado's proof of RT_n^2 based on full König's Lemma.

Theorem (K., Kohlenbach)

$$\mathbf{G}_{\infty}\mathbf{A}^{\omega} + \Pi_{1}^{0} \cdot \mathbf{I}\mathbf{A}^{-} \vdash \Sigma_{1}^{0} \cdot \mathbf{W}\mathbf{K}\mathbf{L}^{-} \to \mathbf{RT}_{n}^{2}^{-}$$

for every fixed n.

Corollary

 $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$ proves RT_n^{2-} , for every fixed n.

< 回 > < 三 > < 三 >

Reduction step

Analyze Erdős' and Rado's proof of RT_n^2 based on full König's Lemma.

Theorem (K., Kohlenbach)

$$\mathbf{G}_{\infty}\mathbf{A}^{\omega} + \Pi_{1}^{0} \cdot \mathbf{I}\mathbf{A}^{-} \vdash \Sigma_{1}^{0} \cdot \mathbf{W}\mathbf{K}\mathbf{L}^{-} \to \mathbf{RT}_{n}^{2}^{-}$$

for every fixed n.

Corollary

 $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$ proves RT_n^{2-} , for every fixed n.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Elimination of Skolem functions for monotone formulas

Theorem (Kohlenbach)

$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$$

is

- Π_2^0 -conservative over PRA,
- Π_3^0 -conservative over $\mathrm{PRA} + \Sigma_1^0$ -IA and
- Π_4^0 -conservative over PRA + Π_1^0 -CP.

Elimination of Skolem functions for monotone formulas Let $\mathcal{T}^{\omega} := G_{\infty}A^{\omega} + QF-AC + WKL.$

Theorem (Kohlenbach)

For every closed term ξ :

 $\mathcal{T}^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} \left(\Pi_1^0 \text{-} \mathrm{CA}(\xi(f)) \to \exists x \in \mathbb{N} \, A_{qf}(f, x) \right)$

 $\Rightarrow one \ can \ extract \ a \ (Kleene-) primitive \ recursive \ functional \ \Phi \ s.t.$ $PRA^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} A_{qf}(f, \Phi(f)).$

Experience from proof-mining shows that many theorems from mathematics can be proved in this system.

Elimination of Skolem functions for monotone formulas Let $\mathcal{T}^{\omega} := G_{\infty}A^{\omega} + QF-AC + WKL.$

Theorem (Kohlenbach)

For every closed term ξ :

 $\begin{aligned} \mathcal{T}^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} \ \left(\Pi_{1}^{0} \text{-} \mathrm{CA}(\xi(f)) \to \exists x \in \mathbb{N} \ A_{qf}(f, x) \right) \\ \Rightarrow \text{ one can extract a (Kleene-)primitive recursive functional } \Phi \text{ s.t.} \\ \mathrm{PRA}^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} \ A_{qf}(f, \Phi(f)). \end{aligned}$

Theorem (K., Kohlenbach)

Let ξ_1 and ξ_2 be closed terms and n be fixed.

 $\mathcal{T}^{\omega} \vdash \forall f \ \left(\Pi_1^0 \text{-CA}(\xi_1(f)) \land \forall k \operatorname{RT}_n^2(\xi_2(f,k)) \to \exists x \in \mathbb{N} \ A_{qf}(f,x)\right) \\ \Rightarrow \text{ one can extract a (Kleene-)primitive recursive functional } \Phi \text{ s.t.} \\ \operatorname{PRA}^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} \ A_{qf}(f,\Phi(f))$

$\mathsf{Bound} \, \operatorname{on} \, n$

Theorem (Jockusch)

The exists a primitive recursive sequence of instances of $RT^2_{<\infty}$ proving the totality of the Ackermann-function.

Theorem (K., Kohlenbach)

$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0 - CA^- \nvDash RT^{2-}_{<\infty}$$

A. Kreuzer (TU Darmstadt)

通 ト イ ヨ ト イ ヨ ト

Results

Theorem (K., Kohlenbach)

For every fixed n a primitive recursive sequence of instance of RT_n^2 does not prove the totality of the Ackermann-function. Especially

 $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0 - CA^- + RT_n^2 \neq \Sigma_2^0 - IA.$

Remark

This yields in the language of RCA_0 :

$$\operatorname{WKL}_{0}^{*} + \Pi_{1}^{0} - \operatorname{CA}^{-} + \operatorname{RT}_{n}^{2} \nvDash \Sigma_{2}^{0} - \operatorname{IA}$$

Comparison of proof-techniques

To prove that ${\mathcal T}$ is arithmetical- / $\Pi^0_2\text{-conservative over }{\mathcal T}'$

reverse mathematics

- Take an arbitrary model ${\cal M}$ of ${\cal T}'.$
- Extend *M* to a model of *T* without changing the arithmetical sentences (e.g. with syntactic forcing).
- The conservation results follows then from the completeness theorem.

proof interpretation

• Take an arbitrary proof of a $\Pi^0_2\mbox{-statement}$

 $\mathcal{T} \vdash \forall x \, \exists y \, A(x,y).$

- Obtain using the functional interpretation a term t realizing y A, i.e. ∀x A(x,tx).
- Eliminate the Skolem functions resulting from axioms in T \ T'.

・ 何 ト ・ ヨ ト ・ ヨ ト

•
$$\mathcal{T}' \vdash \forall x A(x, \tilde{t}x)$$

Recent results

Can the elimination of Skolem functions for monotone formulas be applied to nested instances of RT_2^2 or to full RT_2^2 ?

Split RT_2^2 into COH and SRT_2^2 (see CJS).

Theorem (details need to be check)

For all closed terms ξ_1 , ξ_2 there exists a closed term ϕ such that

 $\begin{aligned} \mathbf{G}_{\infty}\mathbf{A}^{\omega} + \mathbf{QF}\text{-}\mathbf{A}\mathbf{C} + \mathbf{W}\mathbf{K}\mathbf{L} \vdash \forall f \\ \left(\Pi_{1}^{0}\text{-}\mathbf{C}\mathbf{A}(\phi f) \to \exists g \ \left(g \text{ is a solution to } \mathbf{COH}(\xi_{1}f) \land \Pi_{1}^{0}\text{-}\mathbf{C}\mathbf{A}(\xi_{2}fg)\right)\right) \end{aligned}$

Recent results

Can the elimination of Skolem functions for monotone formulas be applied to nested instances of RT_2^2 or to full RT_2^2 ?

Split RT_2^2 into COH and SRT_2^2 (see CJS).

Theorem (details need to be check)

For all closed terms ξ_1 , ξ_2 there exists a closed term ϕ such that

$$\begin{split} \mathbf{G}_{\infty}\mathbf{A}^{\omega} + \mathbf{Q}\mathbf{F}\text{-}\mathbf{A}\mathbf{C} + \mathbf{W}\mathbf{K}\mathbf{L} \vdash \forall f \\ \left(\Pi_{1}^{0}\text{-}\mathbf{C}\mathbf{A}(\phi f) \rightarrow \exists g \ \left(g \text{ is a solution to } \mathbf{C}\mathbf{O}\mathbf{H}(\xi_{1}f) \land \Pi_{1}^{0}\text{-}\mathbf{C}\mathbf{A}(\xi_{2}fg)\right)\right) \end{split}$$

Theorem (details need to be check)

For all closed terms ξ_1 , ξ_2 there exists a closed term ϕ such that

 $\begin{aligned} &\operatorname{PRA}^{\omega} + \operatorname{QF-AC} + \operatorname{WKL} \vdash \forall f \\ & \left(\Pi_1^0 \operatorname{-CA}(\phi f) \to \exists g \ \left(g \text{ is a solution for } \operatorname{SRT}_2^2(\xi_1 f) \ \land \ \Pi_1^0 \operatorname{-CA}(\xi_2 f g) \right) \right) \end{aligned}$

Combining these theorem, proves nested instances of RT_2^2 . A realizing term for a statement proven in this system is provably total in $PRA^\omega + \Sigma_2^0\text{-}IA.$

Methods used: monotone functional interpretation, bar recursion (Spector), uniform weak Königs Lemma, normalization

< 回 > < 三 > < 三 >

Theorem (details need to be check)

For all closed terms ξ_1 , ξ_2 there exists a closed term ϕ such that

 $\begin{aligned} &\operatorname{PRA}^{\omega} + \operatorname{QF-AC} + \operatorname{WKL} \vdash \forall f \\ & \left(\Pi_1^0 \operatorname{-CA}(\phi f) \to \exists g \ \left(g \text{ is a solution for } \operatorname{SRT}_2^2(\xi_1 f) \ \land \ \Pi_1^0 \operatorname{-CA}(\xi_2 f g) \right) \right) \end{aligned}$

Combining these theorem, proves nested instances of RT_2^2 . A realizing term for a statement proven in this system is provably total in $PRA^\omega + \Sigma_2^0\text{-}IA.$

Methods used: monotone functional interpretation, bar recursion (Spector), uniform weak Königs Lemma, normalization

References

- [Kreuzer, Kohlenbach 2009] A. Kreuzer, U. Kohlenbach Ramsey's theorem for pairs and provable recursive functions to appear in Notre Dame Journal of Formal Logic.
- [Kohlenbach 1996] U. Kohlenbach Elimination of Skolem functions for monotone formulas in analysis Arch. Math. Logic 37 (1998), 363–390.