Non-principal ultrafilters, program extraction and higher order reverse mathematics

Alexander P. Kreuzer

ENS Lyon

Universität Bern Seminar Logic and Theoretical Computer Science November 14th, 2013

Outline

- Reverse mathematics
- 2 Higher order reverse mathematics
 - Functional interpretation
- Ultrafilters
 - The results
- 4 The general concept
- 5 Summary

Reverse mathematics

Reverse mathematics is a program which establishes which set existence axioms are necessary to prove a theorem.

- The usual systems of reverse mathematics are two-sorted.
 - ullet One sort for $\mathbb N$ and
 - ullet one for subsets of $\mathbb N.$
- Base system RCA₀.
 RCA₀ contains
 - basic arithmetic, Σ_1^0 -induction,
 - the statement that all computable sets exist.
- Question in Reverse mathematics is:
 To what (set-existence) axioms is a theorem equivalent relative to RCA₀?

Example: Monotone convergence principle

Each increasing sequence of $(x_n) \subseteq \mathbb{Q}$ in [0,1] has a supremum.

- This can be formulated in RCA₀ in the following way.
 - Rational numbers $x=rac{p}{q}$ will be coded as a pair $\langle p,q \rangle := 2^p \cdot 3^q.$
 - The sequence $x_n = \frac{p_n}{q_n}$ will be coded as the set

$$\{\langle n, 2^{p_n} \cdot 3^{q_n} \rangle \colon n \in \mathbb{N}\}.$$

- Want: for each n a 2^{-n} good approximation to the supremum.
- Solution:

$$\{\langle n, q_m \rangle \mid \forall m' > m \ (q_{m'} -_{\mathbb{Q}} q_m <_{\mathbb{Q}} 2^{-n})\}$$

- This set is build by arithmetical quantification, i.e. contains quantification of natural numbers.
- The monotone convergence principle is equivalent to the corresponding system ACA₀.

Reverse mathematics

- Many theorems form mathematics can be analyzed this way.
- Most of them can be show to be equivalent to one of the big five systems.

$$\mathsf{RCA}_0 \leftarrow \mathsf{WKL}_0 \leftarrow \mathsf{ACA}_0 \leftarrow \mathsf{ATR}_0 \leftarrow \Pi^1_1\text{-}\mathsf{CA}_0$$

Higher order statement cannot be formulated in these systems.

Higher order arithmetic

Definition (RCA $_0^{\omega}$, Recursive comprehension, Kohlenbach '05)

 RCA_0^ω is the finite type extension of RCA_0 :

- Sorted into type 0 for \mathbb{N} , type 1 for $\mathbb{N}^{\mathbb{N}}$, type 2 for $\mathbb{N}^{\mathbb{N}^{\mathbb{N}}}$, ...,
- contains basic arithmetic: 0, successor, +, \cdot , λ -abstraction,
- quantifier-free axiom of choice restricted to choice of numbers over functions (QF-AC^{1,0}), i.e.,

$$\forall f^1 \, \exists y^0 \, \mathsf{A}_{\!q\mathit{f}}(f,y) \,{\to}\, \exists G^2 \, \forall f^1 \, \mathsf{A}_{\!q\mathit{f}}(f,G(f))$$

ullet and a recursor R_0 , which provides primitive recursion (for numbers),

$$R_0(0, y^0, f) = y,$$
 $R_0(x+1, y, f) = f(R_0(x, y, f), x),$

• Σ_1^0 -induction.

The closed terms of RCA₀^{ω} will be denoted by T_0 . In Kohlenbach's books this system is denoted by $\widehat{\text{E-PA}}^{\omega} \upharpoonright + \text{QF-AC}^{1,0}$.

Functional interpretation

Theorem (Functional interpretation)

lf

$$\mathsf{RCA}_0^\omega \vdash \forall x \, \exists y \, \mathsf{A}_{qf}(x,y)$$

the one can extract a term $t \in T_0$, such that

$$\mathsf{RCA}_0^\omega \vdash \forall x \, \mathsf{A}_{\mathsf{qf}}(x, t(x)).$$

Sketch of proof.

Apply the following proof translations:

- Elimination of extensionality,
- a negative translation,
- Gödel's Dialectica translation.

See Kohlenbach: Applied Proof Theory.

The intuition behind the functional interpretation

Each formula can be assigned an equivalent $\forall \exists$ -formula. E.g.

$$A :\equiv \forall x \,\exists y \,\forall z \, A_{qf}(x, y, z)$$

will be assigned

$$A^{ND} \equiv \forall x \, \forall f_z \, \exists y \, A_{qf}(x, y, f_z(y)).$$

• This assignment preserves logical rules, like

$$\frac{A \qquad A \to B}{B}$$
,

and exhibits programs.

 Thus, to prove the program extraction theorem we only have to provide programs for the axioms.

Arithmetical comprehension

Let Π_1^0 -CA be the schema

$$\forall f \,\exists g \,\forall n \, (g(n) = 0 \leftrightarrow \forall x \, f(n, x) = 0) \,.$$

Define ACA₀^{ω} to be RCA₀^{ω} + Π_1^0 -CA.

Let Feferman's μ be

$$\mu(f) := \begin{cases} \min\{x \mid f(x) = 0\} & \text{if } \exists x \, f(x) = 0, \\ 0 & \text{otherwise}. \end{cases}$$

Denote by (μ) be the statement that μ exists.

Theorem

- $\bullet \ \mathsf{RCA}_0^\omega + (\mu) \vdash \Pi_1^0\text{-CA}$
- ullet RCA $_0^\omega+(\mu)$ is Π^1_2 -conservative over ACA $_0^\omega$

Theorem (Functional interpretation relative to μ)

If

$$\mathsf{RCA}^{\omega}_0 + (\mu) \vdash \forall x \,\exists y \, \mathsf{A}_{\mathit{qf}}(x,y)$$

the one can extract a term $t \in T_0[\mu]$, such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall x \, \mathsf{A}_{\mathsf{af}}(x, t(x)).$$

We interpreted ACA $_0^{\omega}$ non-constructively using μ . One can also interpret ACA $_0^{\omega}$ directly using bar recursion. See Avigad, Feferman in Handbook of Proof Theory

Filter

Filter

A set $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ is a filter over \mathbb{N} if

- $\forall X, Y \ (X \in \mathcal{F} \land X \subseteq Y \rightarrow Y \in \mathcal{F}),$
- $\forall X, Y \ (X, Y \in \mathcal{F} \to X \cap Y \in \mathcal{F}),$
- \bullet $\emptyset \notin \mathcal{F}$

Ultrafilter

A filter \mathcal{F} is an <u>ultrafilter</u> if it is maximal, i.e.,

$$\forall X \ \left(X \in \mathcal{F} \lor \overline{X} \in \mathcal{F} \right)$$

 $\mathcal{P}_n := \{X \subseteq \mathbb{N} \mid n \in X\}$ is an ultrafilter. These filters are called *principal*.

The Fréchet filter $\{X\subseteq\mathbb{N}\mid X \text{ cofinite}\}$ is a filter but not an ultrafilter.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if

- $\forall X \ (X \in \mathcal{U} \lor \overline{X} \in \mathcal{U}),$
- $\bullet \ \forall X,Y \ (X \in \mathcal{U} \land X \subseteq Y \to Y \in \mathcal{U}),$
- $\bullet \ \forall X,Y \ (X,Y\in \mathcal{U} \to X\cap Y\in \mathcal{U}),$
- $\forall X \ (X \in \mathcal{U} \to X \text{ is infinite}).$

The existence of a non-principal ultrafilter is not provable in ZF.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if

- $\forall X \ (X \in \mathcal{U} \lor \overline{X} \in \mathcal{U}),$
- $\bullet \ \forall X,Y \ (X \in \mathcal{U} \land X \subseteq Y \mathbin{\rightarrow} Y \in \mathcal{U}),$
- $\forall X, Y \ (X, Y \in \mathcal{U} \rightarrow X \cap Y \in \mathcal{U})$,
- $\forall X \ (X \in \mathcal{U} \rightarrow X \text{ is infinite}).$

Coding sets as characteristic function, i.e, $n \in X := [X(n) = 0]$, this can be formulated in RCA₀:

$$(\mathcal{U}): \begin{cases} \exists \mathcal{U}^{2} \left(\ \forall X^{1} \ \left(X \in \mathcal{U} \lor \overline{X} \in \mathcal{U} \right) \\ \land \forall X^{1}, Y^{1} \ \left(X \cap Y \in \mathcal{U} \to Y \in \mathcal{U} \right) \\ \land \forall X^{1}, Y^{1} \ \left(X, Y \in \mathcal{U} \to (X \cap Y) \in \mathcal{U} \right) \\ \land \forall X^{1} \ \left(X \in \mathcal{U} \to \forall n \ \exists k > n \ (k \in X) \right) \\ \land \forall X^{1} \ \left(\mathcal{U}(X) =_{0} \operatorname{sg}(\mathcal{U}(X)) =_{0} \mathcal{U}(\lambda n. \operatorname{sg}(X(n))) \right) \right) \end{cases}$$

Lower bound on the strength of $\mathsf{RCA}^\omega_0 + (\mathcal{U})$

Theorem (K.)

$$\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash (\mu)$$

In particular, $\mathsf{RCA}^\omega_0 + (\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let $f: \mathbb{N} \to \mathbb{N}$ and set $X_f := \{n \mid \exists m \leq n \ f(m) = 0\}.$ Then

$$\exists n \, (f(n) = 0) \Longleftrightarrow X_f \text{ is cofinite}$$

 $\Longleftrightarrow X_f \in \mathcal{U}$

Thus

$$\forall f \left(X_f \in \mathcal{U} \to \exists n \left(f(n) = 0 \land \forall n' < n f(n) \neq 0 \right) \right)$$

QF-AC^{1,0} yields a functional satisfying (μ) .

Upper bound on the strength of $\mathsf{RCA}^\omega_0 + (\mathcal{U})$

Theorem (K.)

 $\mathsf{RCA}_0^\omega + (\mathcal{U})$ is Π_2^1 -conservative over $\mathsf{RCA}_0^\omega + (\mu)$ and thus also over ACA_0^ω .

Proof sketch

Suppose $RCA_0^{\omega} + (\mathcal{U}) \vdash \forall f \exists g \, A(f,g)$ and A does not contain \mathcal{U} .

① The functional interpretation yields a term $t \in T_0[\mu]$, such that

$$\forall f \, \mathsf{A}(f, t(\mathcal{U}, f)).$$

② Normalizing t, such that each occurrence of $\mathcal U$ in t is of the form

$$\mathcal{U}(t'(n^0))$$
 for a term $t'(n^0) \in T_0[\mathcal{U}, \mu, f]$.

In particular, $\mathcal U$ is only used on countably many sets (for each fixed f).

Step 1: Functional interpretation

Suppose $RCA_0^{\omega} + (\mathcal{U}) \vdash \forall f^1 \exists g^1 A(f,g)$ where A is arithmetical and does not contain \mathcal{U} .

Modulo μ the formula A is quantifier-free.

Recall (\mathcal{U}) :

$$(\mathcal{U}): \begin{cases} \exists \mathcal{U}^{2} \left(\ \forall X^{1} \ \left(X \in \mathcal{U} \lor \overline{X} \in \mathcal{U} \right) \right. \\ \wedge \forall X^{1}, Y^{1} \ \left(X \cap Y \in \mathcal{U} \to Y \in \mathcal{U} \right) \\ \wedge \forall X^{1}, Y^{1} \ \left(X, Y \in \mathcal{U} \to (X \cap Y) \in \mathcal{U} \right) \\ \wedge \forall X^{1} \ \left(X \in \mathcal{U} \to \forall n \ \exists k > n \ (k \in X) \right) \\ \wedge \forall X^{1} \ \left(\mathcal{U}(X) =_{0} \operatorname{sg}(\mathcal{U}(X)) =_{0} \mathcal{U}(\lambda n. \operatorname{sg}(X(n))) \right) \end{cases}$$

Modulo RCA $_0^\omega + (\mu)$ this is of the form $\exists \mathcal{U}^2 \, \forall Z^1 \, (\mathcal{U})_{qf} (\mathcal{U}, Z)$. Thus

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \, \forall f^1 \, \exists Z^1 \, \exists g^1 \, \Big((\mathcal{U})_{qf}(\mathcal{U}, Z) \, \rightarrow \, \mathsf{A}_{qf}(f, g) \Big).$$

Step 1: Functional interpretation (cont.)

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \, \forall f^1 \, \exists Z^1 \, \exists g^1 \, \Big((\mathcal{U})_{\mathsf{qf}} (\mathcal{U}, Z) \to \mathsf{A}_{\mathsf{qf}} (f, g) \Big).$$

The functional interpretation extracts terms $t_Z, t_g \in T_0[\mu]$, such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall \mathcal{U}^2 \, \forall f^1 \, \Big((\mathcal{U})_{\mathsf{qf}} (\mathcal{U}, t_Z(\mathcal{U}, f)) \to \mathsf{A}_{\mathsf{qf}} (f, t_g(\mathcal{U}, f)) \Big).$$

Step 2: Term normalization

The terms t_Z, t_g are made of

- 0, successor, +, \cdot , λ -abstraction
- the primitive recursor R_0 , i.e.

$$R_0(0, y, f) = y,$$
 $R_0(x + 1, y, f) = f(R_0(x, y, f), x),$

- ullet μ^2 and
- the parameters \mathcal{U}^2, f^1 .

With coding R_0 is of type 2. The functional ${\cal U}$ is also of type 2.

 \Longrightarrow no functional can take ${\mathcal U}$ as parameter.

Lemma

The terms t_Z, t_g can be normalized, such that each occurrence of ${\cal U}$ is of the form

$$\mathcal{U}(t'(n^0))$$
 for a term t' possible containing \mathcal{U}, f .

Step 2: Term normalization (cont.)

Proof.

Consider $t[\mathcal{U}, f, n^0]$, where \mathcal{U}, f, n^0 are variables.

Assume that all possible λ -reductions haven been carried out. Then one of the following holds:

- 0 t = 0,
- $2 t = S(t_1'), \ t = f(t_1'), \ t = t_1' + t_2', \ t(n) = t_1' \cdot t_2',$

Restart the procedure with t_1' , t_2' and $t_q'm^0$.

Step 3: Construction of (a substitute for) $\mathcal U$

We fix an f and construct a filter \mathcal{F} , such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash (\mathcal{U})_{\mathsf{qf}}(\mathcal{F}, t_Z(\mathcal{F}, f)). \tag{*}$$

This yields then

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \forall f \, \mathsf{A}_{qf}(f, t_g(\mathcal{F}, f))$$

and thus the theorem.

Let t_1, \ldots, t_k be the list term with $\mathcal{U}(t_j(n))$ in t_Z, t_g .

- ullet Assume that t_1,\ldots is ordered according to the subterm ordering.
- We start with the trivial filter $\mathcal{F}_0 = \{\mathbb{N}\}.$
- For each t_i we build a refined $\mathcal{F}_i \supseteq \mathcal{F}_{i-1}$ such that $(\mathcal{U})_{qf}$ relativized the sets coded by t_1, \ldots, t_i holds.
- $\mathcal{F} := \mathcal{F}_k$ solves then (*).

Step 3: Sketch of the construction of \mathcal{F}_1

Let $\mathcal{A} := \{A_1, A_2, \dots\}$ be the set of subsets of \mathbb{N} coded by t_1 . We assume that \mathcal{A} is closed under union, intersection and inverse.

We want a filter \mathcal{F}_1 , such that

- $\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \lor \overline{X} \in \mathcal{F}_1)$,
- $\forall X, Y \in \mathcal{A} \ (X \in \mathcal{F}_1 \land X \subseteq Y \rightarrow Y \in \mathcal{F}_1)$,
- $\forall X, Y \in \mathcal{A} \ (X, Y \in \mathcal{F}_1 \to X \cap Y \in \mathcal{F}_1)$,
- $\forall X \in \mathcal{A} \ (X \in \mathcal{F}_1 \to X \text{ is infinite}).$

Construction:

- We decide for each $i=1,2,\ldots$ whether we put A_i or $\overline{A_i}$ into \mathcal{F}_1 .
- We put A_i into \mathcal{F}_1 if the intersection of A_i with the previously chosen sets is infinite. Otherwise we put $\overline{A_i}$ into \mathcal{F}_1 .

Program extraction

Corollary (to the proof)

If $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \, \mathsf{A}_{\mathsf{qf}}(f,g)$ and A_{qf} does not contain \mathcal{U} then one can extract a term $t \in T_0[\mu]$, such that

$$\mathsf{RCA}_0^\omega + (\mu) \vdash \mathsf{A}_{qf}(f, t(f)).$$

Corollary

If $\mathsf{RCA}_0^\omega + (\mathcal{U}) \vdash \forall f \exists g \, \mathsf{A}_{\mathsf{qf}}(f,g)$ and A_{qf} does not contain \mathcal{U} then one can extract a term t in Gödel's System T, such that

$$A_{qf}(f,t(f))$$

Proof.

- ullet The previous corollary yields a term primitive recursive in μ .
- Interpreting the term using the bar recursor $B_{0,1}$ and then using Howard's ordinal analysis gives a term $t \in T$.

The general concept

The proof theory

- Functional interpretation (Step 1)
- Term normalization (Step 2)

Extension to

- <u>abstract types</u> (Günzel, ongoing work),
- type 3 operators, e.g. Lebesgue measure defined on all subsets of unit interval. (K. '13)

The combinatorics

Construction of the partial ultrafilter on the countable algebra. (Step 3)

Extension to

- idempotent ultrafilters by using iterated Hindman's theorem (K. '12),
- possibly other type 2 operators.

Possible Applications

Possible Applications:

- Program extraction for ultralimit arguments e.g.,
 - from fixed point theory,
 - Gromov's Theorem,
 - Ergodic theory.
- Program extraction for non-standard arguments.

Summary

- Program extraction and conservativity for non-principal ultrafilters.
- The Π^1_2 -consequences of RCA $^\omega_0+(\mathcal{U})$ and the Π^1_2 -consequences of ACA $^\omega_0$ are the same.

Thank you for your attention!

References

Alexander P. Kreuzer

Non-principal ultrafilters, program extraction and higher order reverse mathematics

J. Mathematical Logic 12 (2012), no. 1.

Alexander P. Kreuzer

On idempotent ultrafilters in higher-order reverse mathematics
preprint, arXiv:1208.1424.

Alexander P. Kreuzer

Minimal idempotent ultrafilters and the Auslander-Ellis theorem

preprint, arXiv:1305.6530.