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Abstract. Let the chain antichain principle (CAC) be the statement that

each partial order on N possesses an infinite chain or an infinite antichain.
Chong, Slaman and Yang recently proved using forcing over non-standard

models of arithmetic that CAC is Π1
1-conservative over RCA0 + Π0

1-CP and

so in particular that CAC does not imply Σ0
2-induction. We provide here a

different purely syntactical and constructive proof of the statement that CAC

(even together with WKL) does not imply Σ0
2-induction. In detail we show that

WKLω
0 +CAC is Π0

2-conservative over PRA and that one can extract primitive

recursive realizers for such statements. Moreover, our proof is finitary in the
sense of Hilbert’s program.

CAC implies that every sequence of real numbers has a monotone subse-

quence. This Bolzano-Weierstraß like principle is commonly used in proofs.
Our result makes it possible to extract primitive recursive terms from such

proofs.
Our proof is based on the techniques we develop together with Kohlenbach

in [21]. In the course of the proof we refine Howard’s ordinal analysis of bar

recursion.
We also discuss the Erdős-Moser principle, which —taken together with

CAC— is equivalent to RT2
2.

Let the chain antichain principle (CAC) be the statement that every partial order
on N contains either an infinite chain or an infinite antichain. This principle is a
consequence of Ramsey’s theorem for pairs (RT2

2). The principle RT2
2 states that for

each coloring of unordered pairs of N there exists an infinite subset of N on which
this coloring is constant. The chain antichain principle has been studied in the
reverse mathematics of partial orders. Lately it has received much attention in the
context of the classification of RT2

2 and in particular in the context of determining
the strength of the first order consequences of RT2

2. It is known that RT2
2 implies

Π0
1-CP and that its first order consequences are implied by Σ0

2-IA but it is not
known where between these principles the first order consequences of RT2

2 lie, see
[4, 11]. Chong, Slaman, Yang in [5] recently proved that CAC is Π1

1-conservative
over RCA0 + Π0

1-CP which implies that CAC does not yield Σ0
2-induction. This

result is remarkable since forcing over ω-models —which is usually used to obtain
such conservativity results— is not applicable to obtain conservativity over Π0

1-CP,
see [11, §6]. Chong, Slaman, Yang use instead a forcing over non-standard models
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of arithmetic. This result raises the question whether one can extend it to obtain
the conservativity of RT2

2 or a least gain insights in the properties of principles that
do imply Π0

1-CP but not Σ0
2-IA like CAC.

We provide here a different, purely syntactical and constructive proof of the
fact that CAC does not imply Σ0

2-induction. We show that CAC even together
with WKL is Π0

2-conservative over PRA. Furthermore, we provide a method for
the extraction of primitive recursive realizing functionals for sentences of the form
∀f ∃y Aqf(f, y) that are provable using CAC + WKL. (This means that we extract
a primitive recursive functional ϕ with ∀f Aqf(f, ϕf).) Our proof is based on the
techniques from [21], where we developed a method to extract terms of Ackermann
type from proofs using RT2

2 and primitive recursive terms from proofs using the
cohesive principle and the atomic model theorem.

In [21] we introduced the notion proofwise low. Roughly speaking, this notion
covers the computational content of low2-ness but also keeps track of the induction
used in the proof. A Π1

2-principle P of the form

(1) ∀X ∃Y P ′(X,Y )

is proofwise low over a system, say WKLω0 , if for each term ϕ a term ξ exists such
that

(2) WKLω0 ` ∀X
(
Π0

1-CA(ξX)→∃Y
(
P ′(X,Y ) ∧ Π0

1-CA(ϕXY )
))
.

Here Π0
1-CA(t) :≡ ∃f ∀n (f(n) = 0↔ ∀x t(n, x) = 0) and the ω superscript at WKL0

indicates that we use the finite type variant of WKL0. This means that WKLω0 is
not sorted into two types for N and subsets of N, but into countable many types

for N, NN, NNN
etc. This system is conservative over WKL0, see [18].

If one takes for ϕ in (2) the characteristic term of universal Turing predicate
ΦX,Yn (n)↑ and notes that one can take for ξ also the Turing predicate ΦXn (n)↑, one
has that in a degree d � X ′ — this takes account of WKL — one can compute
Y and Y ′. From this follows that P has low2 solutions. In [21] we showed that
for principles P of the form (1) where P ′ is Π0

3 and which are proofwise low over
WKLω0 the system WKLω0 + Σ0

2-IA + P is Π0
3-conservative over RCAω

0 + Σ0
2-IA and

that one can extract realizing terms from Π0
2 sentences. We, moreover, showed that

RT2
2 is proofwise low over a refinement of WKLω0 for which this result still holds.

This provides a different purely proof-theoretic proof of the well known results from
Cholak, Jockusch, Slaman in [4].

Model-theoretically speaking the rough idea behind this proof is the following.
Take a first order model N = 〈N,+, ·, 0, 1〉 that satisfies Σ2-induction. We would
like to show that one could extend N to an L2-model of RT2

2 and Σ0
2-induction.

For this consider the extension of N to an L2-model M = 〈N,X,+, ·, 0, 1〉 by all
∆2-definable sets of N . This model satisfies ∆0

1-CA and, since Σ1(∆2)-induction
is equivalent to Σ2-induction without parameters, also Σ0

1-IA. Thus M |= RCA0.
The model M can be extended to an model of WKL0, see [24, Theorem IX.2.1].
We will also call this model M.

Now consider the extension of N to another L2-model M′ = 〈N,X′,+, ·, 0, 1〉
where X′ = {X ⊆ N | X ′ ∈ X}. Clearly M′ ⊆M. By the lowness property (2) for
X = ∅ and ϕ = ΦX,Yn (n)↑ interpreted in M the set X′ is closed under applications
of P. HenceM′ |= P, which is in our caseM′ |= RT2

2. The modelM′ also satisfies
Σ0

2-induction and ∆0
1-CA for formulas containing not more than one set parameter.
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Unfortunately one cannot show that for two sets X,Y ∈ X′ that X ⊕ Y ∈ X′.
Therefore M′ 2 RCA0.

In [21] we did a detailed bookkeeping of the uses of comprehension and the
parameters that are involved along a proof of a ∀∃-statement in a system like
WKLω0 + RT2

2. In order to have access to this information we first applied a func-
tional interpretation. With this we could circumvent the problem occurring in the
sketch.

Let RCA∗0 be RCA0 where Σ0
1-IA is replaced by QF-IA and the exponential

function (see [24, X.4]) and let RCAω
0
∗ be the corresponding finite type variant.

In [21] we also showed that for principles P which are proofwise low over WKLω0
∗

(under an additional uniformity assumption) the system WKLω0 + Π0
1-CP + P is

Π0
3-conservative over RCAω

0 . (In [21] this is called proofwise low in sequence.) This
is sufficient for the cohesive principle (COH). However for most principles this
uniformity assumption do not hold. In particular, RT2

2 and CAC do not satisfy it,
see Proposition 2 and Remark 3 in [21].

In this paper we close this gap and show that for each principle P which is
proofwise low over WKLω0

∗ the system WKLω0 + Π0
1-CP + P is Π0

3-conservative over
RCAω

0 and that one can extract primitive recursive realizing terms.
We furthermore show that CAC is proofwise low over WKLω0

∗ and therefore
that the previous result applies to it. With this we can analyze proofs containing
CAC and extract primitive recursive realizers. This is also interesting from the
perspective of proof mining, since CAC implies the statement that each sequence
of real numbers contains a monotone subsequence, which is commonly used in
everyday mathematics.

We start by refining Howard’s ordinal analysis of the bar recursor B0,1, see [14].
The bar recursor B0,1 solves the functional interpretation of Π0

1-CA (and hence
—by iteration— of Π0

∞-CA). More precisely, an instance of Π0
1-CA has at most the

effect on the growth of functions as an application of B0,1 has. Howard’s ordinal
analysis shows for instance that an application of B0,1 to primitive recursive terms
(in the sense of Kleene) yields only functions in T1 (i.e. of Ackermann type). This
corresponds to the fact that with Σ0

1-IA and an instance of Π0
1-CA one can prove

each instance of Σ0
2-IA and hence the totality of Ackermann function but not the

totality of any function on a higher level of the fast growing hierarchy (e.g. functions
provably total with Σ0

3-IA but not with Σ0
2-IA).

We show that applications of B0,1 to terms in RCAω
0
∗ (actually even in G∞Aω)

yield only primitive recursive functions. Crucial for this analysis is the structure of
higher order functionals of RCAω

0
∗. Most important is that this system does not

contain a function iterator constant (which in this system is equivalent to Σ0
1-IA).

Our refined ordinal analysis mentioned above corresponds to the fact that QF-IA
plus an instance of Π0

1-CA implies each instance of Σ0
1-IA and hence the totality of

all primitive recursive functions but not of the Ackermann function.
Using this refinement of Howard’s ordinal analysis of B0,1 we can improve a

result from [21] and show that for each principle P which is proofwise low over
WKLω0

∗ the system WKLω0 + Π0
1-CP + P is Π0

3-conservative over RCAω
0 and that

one can extract primitive recursive realizing terms.
We apply this results to CAC, which lies strictly in between RT2

2 and COH +
Π0

1-CP, and show that this principle is Π0
3-conservative over RCAω

0 and hence does
not lead to more than primitive recursive growth. The proof of the lowness of CAC
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is based on ideas from Chong, Slaman and Yang. However, we will interpret Π0
1-CP

using Π0
1-CA and hence are able to eliminate it at the end. Therefore, we do not

need any non-standard techniques. More importantly and in contrast to the proof
of Chong, Slaman and Yang our proof is finitary in the sense of Hilbert’s program.

Compared to their result ours is on the one hand weaker in the sense that we
only obtain Π0

3-conservativity not full Π1
1-conservativity (strictly speaking we also

obtain conservativity for sentences of the form ∀f ∃y A(f, y), where f ∈ NN and
y ∈ N and A quantifier free). On the other hand our result is stronger since it,
additionally, allows term extraction and the simultaneous treatment of WKL. Con-
servativity for Π0

3 sentences is optimal for our approach since we eliminate Π0
1-CP

and there are Σ0
3 consequences of Π0

1-CP which are not provable in RCA0, see [1].
Moreover, our conservativity is obtained over a system containing all primitive re-
cursive functionals (in the sense of Kleene) and hence many more statement than
in RCA0 are quantifier free.

The paper is organized as follows. First we give a brief introduction into the
logical systems we use. In Section 1 we refine Howard’s ordinal analysis of bar
recursion. In Section 2 we use this result to refine our techniques from [21] and in
Section 3 we show that CAC is proofwise low over a suitable system not containing
Σ0

1-induction and conclude that CAC is Π0
3-conservative over RCAω

0 . In the appen-
dix we discus the Erdős-Moser principle. This principle is the counterpart to CAC
in the sense that RT2

2 splits into those two principles.

Logical systems. We will work in fragments of Heyting and Peano arithmetic in
all finite types T. The set of all finite types is defined to be the smallest set that
satisfies

0 ∈ T, ρ, τ ∈ T⇒ τ(ρ) ∈ T.

The type 0 denotes the type of natural numbers and the type τ(ρ) denotes the type
of functions from ρ to τ . The type 0(0) is abbreviated by 1 the type 0(0(0)) by 2.
The degree of a type is defined by

deg(0) := 0, deg(τ(ρ)) := max(deg(τ), deg(ρ) + 1).

The type of a variable will sometimes be written as superscript.
The systems RCAω

0 , RCAω
0
∗ are the extensions of RCA0 resp. RCA∗0 to all finite

types. For a detailed definition see [18].
The Grzegorczyk arithmetic in all finite types G∞Aω is defined to be the system

that includes λ-abstraction, each branch of the Ackermann function (but not the
Ackermann function), bounded search, bounded recursion and quantifier-free induc-
tion. Since this system contains each branch of the Ackermann function it contains
every primitive recursive function but it does not contain unbounded primitive re-
cursion itself nor unbounded recursors (and hence no function iterator). The closed
terms of G∞Aω will be called G∞Rω.

The system ŴE-PAω� is equivalent to G∞Aω plus Σ0
1-IA and primitive recursion

(of type 0), for a detailed definition see for instance [19, Section 3]. The systems

ŴE-HAω�, G∞Aω
i are the intuitionistic counterparts.

Note that ŴE-PAω� and G∞Aω do not satisfy full extensionality. The different
variants of extensionality are important in [21] and in the extension of the results
from there in Section 2 of this paper. We do not discuss them here and refer the
reader to [21, Section 2]. These systems do not satisfy the deduction theorem (this
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is a consequence of the restricted form for extensionality used). To indicate that
a axioms is an implicative assumption we use ⊕, e.g. G∞Aω ⊕WKL ` A means
G∞Aω `WKL→A.

Let QF-AC be the schema

∀x∃y Aqf(x, y)→∃f ∀xAqf(x, f(x)).

RCAω
0 can be embedded into ŴE-PAω�+ QF-AC and RCAω

0
∗ can be embedded

into G∞Aω + QF-AC. The systems with weak König’s lemma WKLω0 and WKLω0
∗

can be embedded into ŴE-PAω�+ QF-AC⊕WKL resp. G∞Aω + QF-AC⊕WKL.
(Strictly speaking one has to eliminate the extensionality first, see for instance [19,
Section 10.4].)

A functional ϕ is provably continuous if there exists a function αϕ such that

∀f ∃nαϕ(f̄n) 6= 0,

∀f ∀n
(
αϕ(f̄n) 6= 0→ϕ(f) = αϕ(f̄n) .− 1

)
.

The function αϕ is called associate. All closed terms in the system used in this
paper are provably continuous, see for instance [19, Proposition 3.57].

1. Ordinal analysis of bar recursion of terms in G∞Rω

The goal of this section is to show that a single application of the bar recursor
B0,1 to terms in G∞Rω does only lead to primitive recursive terms (in the sense
of Kleene), i.e. terms with computational size < ωω. We use here the definition of
computational size from Howard, see [13, 14]. Roughly speaking the computational
size of a term t of type 0 is an upper bound on the number of term reductions one
has to apply to obtain a numeral. The computational size of a higher type term t is
defined to be the computational size of t(H0, . . . ,Hn) where Hi are fresh variables
such that the term is of type 0. Like Howard we assume that a term t has deg(t) ≤ 2
and is semi-closed (i.e. contains only variables of degree 1 free) whenever we speak
about the computational size of a term t.

Recall that the bar recursor B0,1 is defined to be

B0,1AFGc :=1

{
Gc if A[c] < lth c,

Fc(λu0.B0,1(AFG(c ∗ 〈u〉))) otherwise,

where [c] := λi.(c)i.
Howard uses for technical reasons an extension of the term system. This exten-

sion is conservative and hence does not lead to any problems. Since we are only
going to modify his analysis we will follow this approach:
For each type 1 variable α and terms c, t of type 0 add a new term {α, c, t} to the
system. The term {α, c, t} has the same type as B0,1A. The subterms of it consist
only of the subterms of t. The purpose of this extension is to bind all occurrences of
α in t. The term B0,1AFGc is equal to {α, c, Aα}FGc and can also be contracted
to this term. The term {α, c, t} satisfies following contractions:

{α, c, t} contr {α, c, t′} if t contr t′

{α, c, i}FGc contr Gc if i is numeral < lth(c)

{α, c, t}FGc contr M

{α, c, t}FG(c ∗ 〈n〉) contr {α, c ∗ 〈n〉, t}FG(c ∗ 〈n〉)



6 ALEXANDER P. KREUZER

where

(3) M :=

{
Gc if t[λi.(c)i/α] < lth(c),

F c
(
λu.{α, c, t}FG(c ∗ 〈u〉)

)
otherwise.

For details we refer the reader to [14]. Note that {α, c, t} is there defined for bar
recursors of arbitrary types and not only for B0,1.

We now state a modified version of Theorem 2.3 of [14]. The proof of the fol-
lowing theorem differs from Howard’s proof only in using other ordinal estimates.
The result of it is more suitable for terms which have finite computational size
because it shows in this case that the resulting term has computational size < ωω,
whereas in Howard’s theorem the computational size is always ≥ ωω. For parame-
ters which have computational size of an infinite ordinal Howard’s theorem yields
better results.

Theorem 1. Let F,G and t have computational sizes f, g and size(t). Then the
term {α, c, t}FGc has computational size 2g+f4h, where h = ω + ωsize(t) + ω.

Proof. We assume that f, g ≥ 1.
Like Howard, we say for a term {α, d, s} that the sequence d is m-critical in s

if the term to be contracted in s is of the form αm and m ≥ lth(d). We define
ord(α, d, s) to be ω + ωsize(s) + 1 if d is not critical in s and s is not a numeral. If
d is m-critical we let ord(α, d, s) = ω + ωsize(s) +m− lth(d) + 3. If s is a numeral
n, we let ord(α, d, s) = ω + (n .− lth(d)) + 2.

Like in [14, Theorem 2.3] we prove by transfinite induction on b = ord(α, c, t)
that {α, c, t}FGc has computational size 2g+f4b.

We consider the following cases:

• If t is not a numeral and c is not critical then executing a computation
step reduces t to t′ such that size(t′) < size(t) and hence ord(α, c, t′) <

ord(α, c, t) and so 2g+f4 ord(α,c,t′) < 2g+f4b.
• If t is a numeral that is < lth(c) then {α, c, t}FGc reduces to Gc which has

computation size g ≤ 2g < 2g+f4b.
• The cases where c is critical or t is a numeral ≥ lth(c) remain. We treat

here at first the former case, the later will follow from a slight modification
of this.

We can reduce {α, c, t}FGc to M from (3) in one step. For the case
distinction in M we have to compute t[λi.(c)i/α]. By Theorem 2.1 from
[14] we can compute it in ωsize(t) steps. By finitely many steps j we then
arrive at either

Gc or Fc
(
λu.{α, c, t}FG(c ∗ 〈u〉)

)︸ ︷︷ ︸
M2

.

In the case of Gc additionally g more computation steps are needed. In
total this yields

(4) g + j + ωsize(t) + 1︸ ︷︷ ︸
<b

< 2g+f4b.

In the case of M2 we reduce

λu.{α, c, t}FG(c ∗ 〈u〉)x to {α, c ∗ 〈n〉, t}FG(c ∗ 〈n〉)
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in 3 steps. Let a = ord(α, c ∗ 〈n〉, t). By definition of ord we have a < b.
By induction hypothesis {α, c ∗ 〈n〉, t}FG(c ∗ 〈n〉) has computational size
2g+f4a. The term c has computational size ω ≤ 2g+f4a. Together with
Theorem 2.1 from [14] this show that M2 has computation size

(2g+f4a + 3)f ≤ (2g+f4a + 2g+f4a)f (a ≥ ω)

≤ 2g+f4a+1 · f

< 2g+f4a+1 · 2f+1 (f < 2f+1)

= 2g+f4a+1+f+1

≤ 2g+f4a+f3 (f ≥ 1)

Together with the steps for the cases distinction we obtain the following
computational size

(2g+f4a + 3)f + j + ωsize(t) + 1︸ ︷︷ ︸
=:z

< 2g+f4a+f3 + 2z+1

≤ 2max(g+f4a+f3,z+1) · 2

≤ 2g+f4b

The last ≤ holds since max(g + f4a + f3, z + 1) < g + f4b and therefore
max(g + f4a+ f4, z + 1) + 1 ≤ g + f4b.

The case where t is a numeral ≥ lth(c) can be treated similarly. Here
t[λi.(c)i/α] does not need to be computed. Hence, the equation (4) becomes

g + j + 1 < 2g+f4b.

Since j+ 1 < ω < b this is still valid. The rest of the argument remains the
same because also a < b holds.

This proves the theorem. �

Remark 2. Define Bezem’s bar recursor BB0,1 to be

BB0,1AFGc :=1

{
Gc if A[c]B < lth c,

Fc(λu0.BB0,1(AFG(c ∗ 〈u〉))) otherwise,

where [c]B :=

{
(c)i if i < lth(c)

(c)lth(c) .− 1 otherwise.

This bar recursor differs from Howard’s bar recursor only in the definition of [ · ].
Hence, Theorem 1 also holds for BB0,1.

We will use this bar recursor in Theorem 5 below to define a majorant for B0,1.

In the following we will treat B
(B)
0,1 as a constant satisfying the defining equations

of the bar recursor, but which is not provably total.

Theorem 3. The system ŴE-PAω� proves that for all semi-closed terms A,F,G, c
with provably finite computational size B0,1AFGc is total, i.e. there exists a term
that provably satisfies the defining equations. The same holds for BB0,1AFGc.

Proof. Let f, g, a be the computational sizes of F,G,A.
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The proof of Theorem 1 for {α, c, Aα}FGc can be formalized in a system con-
taining the Σ0

1-least number principle for sets containing elements < 2g+f4(ω+ωa+ω).
Since

2g+f4(ω+ωa+ω) = 2ω(a+2) = ωa+2 < ωω

this principle is equivalent to Σ0
1-induction (over N), see [10, II.3.18] and also The-

orem 56 in [21]. Hence the system ŴE-PAω� suffices.
The conservativity of Howard’s extended term system can also be formalized in

ŴE-PAω�. Therefore this systems also proves the totality of B0,1AFGc. �

For the analysis of terms in G∞Rω we use the following property:

Proposition 4 ([16, Proposition 2.2.22], [19, Corollary 3.42]). Let ρ = 0ρk . . . ρ1
with deg(ρi) ≤ 1. For each term tρ ∈ G∞Rω there exists a term t∗[xρ11 , . . . , x

ρk
k ]

such that
• t∗[x1, . . . , xk] contains at most x1, . . . , xk as free variables,
• t∗[x1, . . . , xk] is build up only from x1, . . . , xk, 0

0, A0, A1, . . . , where Ai is
the i-th branch of the Ackermann function,
• G∞Aω

i ` λx1, . . . , xk.t∗[x1, . . . , xk] maj t.
In particular, every term t ∈ G∞Rω of degree ≤ 2 is provably majorized by a

term that has provably finite computational size.

Theorem 5. Let A[x1], F [x], G[x], c[x] be terms of appropriated type such that
B0,1AFGc is well-formed and such that λx1.A[x], F [x], G[x], c[x] ∈ G∞Rω. Then

ŴE-HAω� proves that f := λx1.λy0.B0,1AFGcy is total. Moreover this system
proves that there exists a majorant to f .

Proof. First observe that the totality of the bar recursor in f can be proven using
Π0

2-bar induction of type 0 (Π0
2-BI0). (Use the bar induction to prove the statement

∀u∃v B0,1AFGcu = v. For a definition of BI0 see for instance [21, Definition 52].)
To make use of the properties described in Proposition 4 we will first show that a
majorant to f exists. With this we can bound the ∃-quantifier in the bar induction
and obtain that Π0

1-bar induction (Π0
1-BI0) suffices. By Lemma 53 in [21] this is

included in ŴE-PAω� + QF-AC.
We now show that there exists majorant to f and that it is total. Let

B×0,1 := λA,F,G, c.BB0,1AFGGc ,

B∗0,1 := λA,F,G, c.(B×0,1AFGc)
M
,(5)

where

FGtf := max(Gt, F tf(lth(t) .− 1)), fi(x) := f(max(i, x))

and (f)Mx := max
y≤x

f(x).

We have B∗0,1 maj B0,1 provably in ŴE-PAω� + QF-AC, see Proposition 54 in
[21] and also [2]. In [21, Proposition 54] we use a different majorant but mutatis
mutandis the proof also shows that B∗0,1 as defined in (5) majorizes B0,1.1

1We do not use here the majorant of B0,1 as defined in [19] or [21] which would build internally

paths through the tree A which are not monotone. Before applying the majorant A∗ to such paths
they have to be made monotone such that they are majorants. But this cannot be done using
only terms with finite computational size.
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Applying Proposition 4 we obtain majorizing semi-closed terms A∗, F ∗, G∗, c∗

for A,FG, G, c with finite computational size.
SinceB∗0,1 is a specific application ofBB0,1, we can apply Theorem 3 toB∗0,1A

∗F ∗G∗c∗

to obtain its totality. With this the totality of f and the existence of a majorant is

proven in the system ŴE-PAω� + QF-AC.
Since this statement is ∀∃, the functional translates this prove into a proof in

ŴE-HAω�. This provides the theorem. �

Corollary 6. The term B0,1AFGc where A,F,G, c are semi-closed terms of G∞Aω

is provably equal to a term in T0 (i.e. the fragment of Gödel’s T where the recursor
is restricted to recursion of type 0).

Proof. Apply the functional interpretation (combined with a negative translation)
to the result of Theorem 5, see [19, Proposition 10.53]. The term extracted using
this satisfies the corollary. �

This result can be used to reprove the following result from Parsons [23, Lemma 4].

Corollary 7. Let R1 be the recursor for type 1 objects, i.e. R10fGx = fx and
R1(n+ 1)fGx = G(R1nfG)nx, where x, n, fx are of type 0. (Note that R1 cannot
be reduced to primitive recursion, since G takes an element of NN as first parameter.)

Then the term R1nfG where G is a semi-closed term of G∞Aω is provably equal
to a term in T0.

Proof. Corollary 6 and the fact that R1 is elementarily definable from B0,1. �

2. Proofwise low relative to G∞Aω

In [21] we showed that principles P of the form

(6) (P): ∀c1 ∃g1 ∀u1 Pqf(c, g, u)︸ ︷︷ ︸
≡:P (c,g)

,

where Pqf is quantifier free, which are proofwise low relative to ŴE-PAω�+QF-AC⊕
WKL are conservative over ŴE-PAω�+Σ0

2-IA for sentences of the form ∀x1 ∃y0Aqf(x, y).
We now show that for principles P which are proofwise low relative to G∞Aω +

QF-AC ⊕WKL the system ŴE-PAω� + QF-AC ⊕WKL ⊕ P is conservative over

ŴE-HAω� for sentences of the form ∀x1 ∃y0Aqf(x, y). (Actually we only treated
the case of RT2

2 but mutatis mutandis this works for each principle of this form.)
For notation and a discussion of the techniques involved in this proof we refer the
reader to [21].

Let now P be a principle that is proofwise low over G∞Aω + QF-AC⊕WKL (a
fortiori it is sufficient that P is proofwise low over WKLω0

∗ since this system can be
embedded into the other). This means we have for each provably continuous term
ϕ a provably continuous term ξ such that

G∞Aω + QF-AC⊕WKL ` ∀c
(
Π0

1-CA(ξc)→∃g
(
P (c, g) ∧ Π0

1-CA(ϕcg)
))
.
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A functional interpretation of this statement yields

(7) G∞Aω
i ⊕ (B) `

∀c∀U ∀fξ ∀Xϕ, Yϕ ∃xξ, yξ ∃g ∃fϕ
((

Π0
1-ĈA(ξf)

)
qf

(fξ, xξ, yξ)

→
(
P (c, g, Ugfϕ) ∧ Π0

1-ĈA(ϕfg)
)
qf

(fϕ, Xϕgfϕ, Yϕgfϕ))
)
,

and that there exist terms in G∞Rω realizing xξ, yξ, g, fϕ, cf. to Theorem 51 in [21].
Using (7) in the proof of Proposition 61 from [21] instead of Theorem 51 of

[21] we obtain a variant of Proposition 61 where ŴE-HAω� is replaced by G∞Aω
i ,

RT2
2 is replaced by P and T0[R] is replaced by G∞Rω[R] (here R is now a solution

functional for PND). In the same way we obtained Corollary 62 from Proposition 61
in [21] we can extend the previous statement to terms in G∞Rω[R, R0,Φ

′
0] (which

is equal to T0[R,Φ′0]) but of course not to terms containing R1. As consequence we
obtain the following modification of Proposition 63 from [21]:

Proposition 8. Let Aqf be a quantifier-free formula that contains only the shown
variables free and let P be a principle of the form (6) which is proofwise low over
G∞Aω + QF-AC⊕WKL. If

N̂-PAω� + QF-AC + WKL + P ` ∀x1 ∃y0Aqf(x, y)

then one can find terms ty, tu, tv, ξ ∈ G∞Rω[B] such that

G∞Aω
i ⊕ B ` ∀x1 ∀f

((
Π0

1-ĈA(ξx)
)
QF

(f, tufx, tvfx)→Aqf(x, tyfx)
)
.

Similarly to the discussion preceding Theorem 65 in [21], we interpret Π0
1-ĈA(ξx)

with a single application of B0,1 (or in other words using a single application of the
rule of bar recursion). With this we obtain

ŴE-HAω�⊕ (B) + R-(B0,1) ` ∀x1Aqf(x, tx),

where t ∈ G∞Rω[B, B0,1] and t contains only a single application of B0,1 to semi-
closed terms A[x], F [x], G[x], c[x] and R-(B0,1) is the rule of B0,1 which states that
applications of B0,1 to semi-closed term of G∞Rω exists. We strengthened the ver-

ifying theory to ŴE-HAω� because we do not know whether one can show without
Σ0

1-IA that an application of B0,1 solves the functional interpretation of an instance
of Π0

1-CA.
We now build a majorant t∗ of t. The application of B0,1 will be majorized like

in the proof of Theorem 5. By Proposition 54 in [21] and the fact that the the

theory used in this Proposition has a functional interpretation in ŴE-HAω�, we
obtain that B∗0,1 applied to majorants of A,F,G, c majorizes B0,1AFGc Hence we
obtain

ŴE-HAω�⊕ (B) + R-(B0,1) ` ∀x1 ∃y ≤ t∗x Aqf(x, y),

where t∗ ∈ G∞Rω[B0,1] and t∗ contains only a single application of B0,1 to semi-
closed terms with finite computational size.

Applying bounded search we obtain a new realizer t′ for y:

t′x :=

{
minimal y ≤ t∗x with Aqf(x, y), if such a y exists,

0 otherwise.
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Now using the ordinal analysis of B0,1 we obtain a term t′′ that is provably equal to
t′ and that is definable using transfinite primitive recursion up to < ωω and hence

in ŴE-HAω�, see [10, II.3.18] and also [21, Theorem 56]. So that

ŴE-HAω�⊕ (B) ` ∀x1Aqf(x, t
′′x).

The principle B may be eliminate from the system with a monotone functional
interpretation like in [21], see [15], [19, Section 10.3]. We obtain

ŴE-HAω� ` ∀x1Aqf(x, t
′′x).

Combining this discussion with Proposition 8 we obtain the following theorem:

Theorem 9. Let Aqf(x
1, y0) be a quantifier-free formula with only x, y free and P

a principle of the form (6) which is proofwise low over G∞Aω + QF-AC⊕WKL. If

N̂-PAω� + QF-AC + WKL + P ` ∀x1 ∃y0Aqf(x, y)

then one can extract a term t ∈ T0 such that

ŴE-HAω� ` ∀x1Aqf(x, tx).

Together with elimination of extensionality (see [22], [19, Section 10.4] and also
[21, Proposition 7]) we obtain:

Corollary 10. If

Ê-PAω� + QF-AC0,1 + QF-AC1,0 + WKL + P ` ∀x1 ∃y0Aqf(x, y)

then one can extract a term t ∈ T0 such that

ŴE-HAω� ` ∀x1Aqf(x, tx).

Corollary 11. Let P be a principle of the form (6) that is proofwise low over
WKLω0

∗. Then the system WKLω0 + P is conservative over RCAω
0 for sentences of

the form ∀x1 ∃y0Aqf(x, y). Moreover, one can extract from a proof of this statement
a term t ∈ T0 realizing y (that is a primitive recursive functional in the sense of
Kleene).

In particular, WKLω0 + P is Π0
3-conservative over RCAω

0 and Π0
2-conservative

over PRA.

Proof. The first part of this corollary is just a reformulation of the previous corol-
lary. The second part follows from the observation that over RCAω

0 each Π0
3-sentence

is equivalent to a sentence of the form ∀x1 ∃y0Aqf(x, y). The last statement follows
from the fact that RCAω

0 is Π0
2-conservative over PRA. �

3. Chain antichain principle

Let the chain antichain principle (CAC) be the principle that states that every
partial order on N has an infinite chain or antichain. For notational ease we assume
here that each (anti)chain is also ordered by the ordering of N. We formalize CAC
in the following way:

(CAC): ∀χP ∃H
(
∀u, v ∈ H

(
u < v→u ≤P v

)
∨ ∀u, v ∈ H

(
u < v→u ≥P v

)
∨ ∀u, v ∈ H

(
u < v→u |P v

))
,
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where the set H is a given as strictly increasing enumeration, i.e. H is a function
such that Hn is the n-th element of H.2 The partial order P is given by its
characteristic function χP . The relations ≤P , |P are defined to be

u ≤P v :≡

χP (x, y) = 0
The relation ([0, 〈u, v〉],�) with
x � y :≡ [〈x, y〉 ≤ 〈u, v〉 ∧ χP (x, y) = 0]
defines a partial order,

⊥ otherwise,

u |P v :≡ ¬ (u ≤P v) ∧ ¬ (v ≤P u) .

(We assume here that the paring 〈x, y〉 is monotone in both components.) With
this any function χP describes a partial order.

Hirschfeldt and Shore observed in [11] that CAC splits into the cohesive principle
and the, so called, stable chain antichain principle. The cohesive principle (COH) is
the statement that for each sequence (Ri)i∈N if subsets of N there exists a cohesive
set X, i.e. a set X satisfying

∀i
(
X ⊆∗ Ri ∧ X ⊆∗ Ri

)
,

where X ⊆∗ Y :≡ (X \ Y is finite). The stable chain antichain principle (SCAC)
is the restriction of CAC to stable partial ordering, where we call a partial ordering
≤P stable if one of the following holds

(i) For all x either x ≤P y for all but finitely many y or x |P y for all but
finitely many y.

(ii) For all x either x ≥P y for all but finitely many y or x |P y for all but
finitely many y.

Remark 12. In [20] we showed that COH + Π0
1-CP is equivalent to the variant of

the Bolzano-Weierstraß principle that states that every bounded sequence of R has
a —possibly slowly— converging subsequence.

The principle ADS, which is CAC restricted to linear orders, is equivalent to the
statement that every sequence in R has a monotone subsequence. If the sequence is
bounded then the monotone subsequence is a fortiori converging (possible slowly).
Hence ADS and CAC can be seen as generalizations of this variant of the Bolzano-
Weierstraß principle.

To see that ADS implies that the sequence (xn)n∈N ⊆ R has an monotone sub-
sequence one has take some care since equality on R and hence also ≤R is not
decidable. To prove the statement one has to make the following case distinction.
Either (xn) has a constant subsequence or there exists a subsequence of pairwise
different elements. The solution to the former case is trivial and the latter case
can be solved by applying ADS since ≤R coincides with <R on this sequence and
is therefore decidable.

For the other direction it suffices to show that each countable linear ordering can
be embedded into a subset of Q. This follows from the construction described in
the proof of [8, Theorem 2.1] and by noting that it can be carried out in RCA0.

2Strictly speaking we cannot quantify over strictly monotone functions. Officially, we quantify

over all functions from N→ N and replace every occurrence of H(n) by

H̃(n) :=

{
H(n) if n = 0 or H(n) > H̃(n .− 1),

H̃(n .− 1) + 1 otherwise.
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Here it is also interesting to mention that de Smet and Weiermann did a fine
grain analysis of a density variant of this principle restricted to natural numbers
in [7, 6].

We will show in this section that CAC is proofwise low over G∞Aω + QF-AC⊕
WKL and hence that Theorem 9 and the Corollaries 10 and 11 apply to it. This
strengthens our result from [21], where we were only able to handle COH.

Our proof is based on [5]. The non-standard construction is replaced by the
following argument.

3.1. Building infinite sets without Σ0
1-induction. Call a set X

• infinite or unbounded if

∀k ∃n > k n ∈ X

and
• strictly increasingly enumerable if there

exists a strictly monotone function f such that rng(f) = X.

It is clear that a strictly increasingly enumerable set is also unbounded. However,
to construct a strictly increasing enumeration for an unbounded set in general

requires Σ0
1-IA (e.g. RCA0 or ŴE-HAω� + QF-AC).

We will now discuss a way to build unbounded sets in a system that does not
contain Σ0

1-IA. Let f be a function that maps (codes of) finite subsets of N into
(codes of) finite subsets of N and that is monotone in the sense of

(8) x ( f(x), f(x) \ x ⊆ [max(x) + 1,∞[ .

Define now X ⊆ N by

X :=
⋃
n∈N

fn(∅),

where fn is the n-th iteration of f .
The properties of f ensure that

n ∈ X ←→ n ∈ fn+1(∅).

Hence, the function g(n) :=
[
n-th element of fn+1(∅)

]
defines a strictly increasing

enumeration of X that is definable for instance in RCA0 or ŴE-HAω�+ QF-AC (if
f is).

In a system without Σ0
1-IA (e.g. RCA∗0 or G∞Aω+QF-AC) it is a priori not clear

whether X is well defined since one cannot build the n-th iterate of the unbounded
function f .

To define a set that is provably equal to X let

f̃k(x) :=

{
f(x) if f(x) ⊆ [0, k[,

x otherwise.

The function f̃k is bounded and therefore can be iterated using bounded recursion.
For f̃k we have the following equivalence

n ∈ X ←→ n ∈ fn+1(∅) ←→ n ∈ f
(

(f̃n)n(∅)
)
.
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To see that the last equivalence holds let m′ be the least m ≤ n+ 1 with fm(∅) ∩
[n,∞[ 6= ∅. By (8) we have f (m

′ .− 1)(∅) ⊆ [0, n[ and hence (f̃n)n(∅) = f (m
′ .− 1)(∅)

and f(f̃n)n(∅) = fm
′
(∅).

Therefore, we can define that characteristic function χX by

χX(n) :=

{
0 if n ∈ f

(
(f̃n)n(∅)

)
,

1 otherwise.

To show now that X is unbounded assume for a contradiction that X is bounded
by b. By the definition of X we then have that (f̃b+1)n(∅) = fn(∅). Hence f is
also bounded (at least along the iteration). Therefore bounded recursion suffices to
iterate the function and the strictly increasing enumeration g of the set X can be
defined. But this contradicts the boundedness of X. Hence X is unbounded.

3.2. Proofwise low. We will use the ideas of the preceding section to show that
CAC is proofwise low over G∞Aω+QF-AC⊕WKL. To apply these ideas let uCAC
be the CAC with the except that it only require an unbounded (anti)chain, i.e.

(uCAC): ∀χP ∃H = χH , fH

(
∀n max(fH(n), n) ∈ H

∧
(
∀u, v ∈ H

(
u < v→u ≤P v

)
∨ ∀u, v ∈ H

(
u < v→u ≥P v

)
∨ ∀u, v ∈ H

(
u < v→u |P v

)))
.

Here H is given as a characteristic function χH plus a witness for the unboundedness
fH (i.e. fH(n) ≥ n and its range is included in H). Let uSCAC be the restriction
of uCAC to stable partial orderings.

For a partial order ≤P define

A2 := {x | x 2 y for all but finitely many y} ,
where 2 ∈ {≤P , ≥P , |P }. If ≤P is stable then these sets are disjoint and either
A≤P

∪ A|P = N or A≥P
∪ A|P = N. Hence these sets are ∆0

2. One can easily
establish that each infinite chain, antichain is a subset of A≤P

resp. A≥P
, A|P .

We will write in the following y ⊆fin X for y is a code for a finite subset of X
and y v X for y is an initial segment of the strictly increasing enumeration of the
set X.

Proposition 13. For every closed term ϕ there exists a closed term ξ such that

G∞Aω + QF-AC

` ∀χP
(
Π0

1-CA(ξχP )→∃H, fH
(
uSCAC(χP , H) ∧ Π0

1-CA(ϕχPHfH)
))
.

Here uSCAC(χP , H, fH) expresses that H, fH is a solution to uSCAC and the par-
tial order described by χP .

In other words uSCAC is proofwise low over G∞Aω + QF-AC.

Proof. Let χP be the characteristic function of a stable partial ordering. Without
loss of generality we assume that (i) from the definition of stability holds, the case
(ii) can be handle analogously.

We will start with the following claim:
Claim: Let Y be an infinite Σ0

1-set whose characteristic function is given by a
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term t which contains only χP and type 0 variables free. This means n ∈ Y iff
∃x tnx = 0. Then Y either has an element in A≤P

or one can define an infinite
antichain that solves the lemma.
Proof of the claim: Suppose that Y does not contain an element of A≤P

i.e.
Y ⊆ A|P . By an instance of Π0

1-CP (which follows from the instance of Π0
1-CA) one

can proof that

∀y ⊆fin Y (y is an antichain→∃z ∈ Y y ∪ {z} is an antichain) .

By definition this is equivalent to

∀y ∀x (∀i < lth(y) t(y)i(x)i = 0 ∧ y is an antichain)

→∃z, x′ (tzx′ = 0 ∧ y ∪ {z} is an antichain) .

Now let f be the choice function that chooses the minimal z (and x′) extending
y (and x). Iterating f using an instance of Σ0

1-IA (which also follows from the
instance of Π0

1-CA) yields an infinite antichain H. The instance of comprehension
Π0

1-CA(ϕχPH) can be reduced to the imposed instance of comprehension using the
following equivalence

∀n (∀k ϕχPHnk ↔ ∀k ∀x∀h v H αϕχP
(h, n, k) ≤ 1)

and the fact that h v H can be using a quantifier-free formula depending only on
t, x, h. (This formula just expresses that h, x are the result of the iteration of f .)
The function αϕχP

(h, n, k) here is an associate to the function λH.ϕχPHnk. For
notational ease we assume here that H is given as strictly increasing enumeration.
Since on can define from this a characteristic function for H and fH by a term in
G∞Aω this does not lead to any problems. This proves the claim.

We assume from now on that there is no Σ0
1-set Y ⊆ A|P given by such a term t.

Otherwise we would be done. The assumption implies that A≤P
has infinitely many

elements. (If not the set Y := [max(A≤P
) + 1,∞[ would be an infinite subset of

A|P which could be easily described by a term.) We will show that we can construct

an unbounded ≤P -chain H ⊆ A≤P
for which we can prove the instance of Π0

1-CA.
First we define a function g1(n, h) that for a given n extends a given ≤P -chain

h ⊆fin A≤P
to a finite ≤P -chain h′ ⊆fin A≤P

such that for all ≤P -chains X with
h′ v X and X ⊆ A≤P

the following holds

(9) ∀n′ < n (∀k ϕχPXn′k = 0↔ ∀k αϕχP
(h′, n′, k) ≤ 1) .

In other words we extend h to h′ such that the instance of comprehension Π0
1-CA(ϕχPH)

is decided up to the index n.
Define for each D ⊆ [0, n] the set

SD,h := {h′ | h′ is a ≤P -chain ∧ h v h′ ∧ |h′| <∞ ∧ ∀n′ ∈ D ∃k αϕχP
(h′, n′, k) > 1}.

The elements of this set are those extensions of h which make the comprehension
Π0

1-CA(ϕχPH) for the indexes in D false. This set is Σ0
1 and can be defined by a

fixed term containing only the parameters χP , D, h.
The statement that there is no extension of h in SD,h whose elements are in A≤P

is

(10) ∀y
(
y /∈ SD,h ∩ Pfin(A≤P

)
)
.

This formula is Π0
2. We will show that there exists a Σ0

2 formula that is equivalent
and hence that the statement is ∆0

2.
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Consider the set MD,h := {maxP (y) | y ∈ SD,h}. This set is also Σ0
1 also does

only depend on χP and the type 0 objects D,h. (Recall that we assume that a
≤P -chain is also ordered by < on N.)

We will distinguish the following cases:

• The set MD,h is infinite. In this case there exists by the assumption and
the claim an element of MD,h that is also in A≤P

. This means that there
exits a ≤P -chain y in SD,h whose maxP is in A≤P

and hence the whole
≤P -chain is in A≤P . Therefore (10) fails.
• The set MD,h is finite. Each chain in SD,h contains only elements which

are ≤P x for some x ∈MD,h. By stability for each x ∈MD,h there are only
finitely many elements y with x ≥P y. Applying Π0

1-CP to this yields that
there are only finitely elements y with ∃x ∈MD,h y ≤P x and hence that
SD,h is finite.

In total (10) is equivalent to

∃x
(
∀y
(
y is ≤P -chain ∧ maxP (y) > x→ y /∈ SD,h

)
∧ ∀y

(
y is ≤P -chain ∧ maxP (y) ≤ x→ y /∈ SD,h ∩ Pfin(A≤P

)
))

where the second quantification over y can be bounded and hence (10) is ∆0
2.

Therefore an instance of ∆0
2-IA (which is provable from an instance of Π0

1-CA,
see [21, Lemma 12.(iii)]) is sufficient to prove that there exists a maximal D′ ⊆ [0, n]
for which SD,h ∩ Pfin(A≤P

) is not empty, i.e.

∃D′ ⊆ [0, n]∃h′
(
h′ ∈ SD′,h ∩ Pfin(A≤P

)

∧ ∀E
(
D′ ⊆ E ⊆ [0, n]→∀h′

(
h′ /∈ SE,h ∩ Pfin(A≤P

)
)) )

.

Since D′ is maximal each h′ ∈ SD′,h ∩ Pfin(A≤P
) satisfies (9).

Hence taking for g1(n, h) the function that chooses for h and n an h′ ∈ SD′,h ∩
Pfin(A≤P

) for this maximal D′ has the desired properties. This choice function
exists by an instance of Σ0

2-AC which is also provable from an instance of Π0
1-CA.

Now define g2 to be a function which extends each chain h ⊆fin A≤P
by one

element in A≤P
, for instance

g2(h) := h ∪
{

min{x ∈ A≤P
| max(h) < x ∧ maxP (h ∩A≤P

) ≤P x}
}
.

This function exists also by an instance of Σ0
2-AC.

The function f(h) := g2(g1(max(h), h)) now satisfies the properties in (8) on
page 13. By the discussion in the previous section the set H :=

⋃
n f

n(∅) is definable
in this system and provably unbounded. The values of f are finite ≤P -chains that
are included in A≤P

. Hence H defines an unbounded ≤P -chain.
Furthermore, one can prove Π0

1-CA(ϕχPH): To decide whether

(11) ∀k ϕχPHnk = 0

holds for an n take an element x ∈ H with x ≥ n. By the unboundedness this
exists. In particular there exists a smallest m such that x ∈ fm(∅). For this we

have fm(∅) = f
(

(f̃x)x(∅)
)

. By the definition g1 and (9) we have that (11) is true

iff

∀k αϕχP
(g1(|fm(∅)|, fm(∅)), n, k) ≤ 1.
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(We assume here again that H is given as strictly increasing enumeration.) This is
again by the definition of g1 true iff

∀k αϕχP
(fm+1(∅), n, k) ≤ 1.

Which is the same as

∀k αϕχP

(
ff
(
(f̃x)x(∅)

)
, n, k

)
≤ 1

and thus can be computed using the imposed instance of comprehension.
The different instances of Π0

1-CA can be coded together into a term ξ, see [21,
Remark 11] and for a reference [17]. This solves the proposition. �

Corollary 14. CAC is proofwise low over G∞Aω + QF-AC⊕WKL.

Proof. Lemma 13 from [21] for n = 0 shows that one can iterate fH in the results
of Proposition 13 while retaining the instance of comprehension. With this one
can define an strictly increasing enumeration of H and hence shows that SCAC is
proofwise low over G∞Aω + QF-AC.

The result follows from the fact that COH is proofwise low of G∞Aω+QF-AC⊕
WKL ([21, Corollary 18]) and from noting that the proof

SCAC + COH→CAC

in [11, Proposition 3.7] can be carried out in G∞Aω while retaining the proofwise
low property. �

Theorem 15. The system

ŴE-PAω� + QF-AC⊕WKL⊕ CAC

is conservative over ŴE-HAω� for sentences of the form ∀x1 ∃y0Aqf(x, y). More-
over one can extract a primitive recursive realizing term t[x] for y.

In particular,

WKLω0 + CAC

is conservative for sentences of the from ∀x1 ∃y0Aqf(x, y) and a fortiori Π0
3-conser-

vative over RCAω
0 .

Proof. Corollary 14 and Corollaries 10, 11. �

This result raises the question whether one can extend it and show that RT2
2 is

proofwise low over a system like WKLω0
∗ or any other system without Σ0

1-induction
and thus can show that RT2

2 does not imply Σ0
2-induction.

Let the Erdős-Moser principle (EM) be the principle that states that every tour-
nament on N contains an infinite transitive subgraph. A tournament is a directed
graph 〈N,→〉 such that for each pairs of nodes x, y either x→ y or x← y. The prin-
ciple RT2

2 is equivalent to CAC+EM (in fact even to ADS+EM), see Appendix A.
Corollary 14 shows that is sufficient to show the EM is proofwise low over a system
without Σ0

1-induction in order to show that RT2
2 does not imply Σ0

2-induction.
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Appendix A. The Erdős-Moser principle

A tournament is a directed graph 〈E,→〉 such that for each pairs of nodes x, y
with x 6= y either x→ y or x← y but not both. The Erdős-Moser principle (EM)
states that each tournament on N contains an infinite transitive subtournament. It
is easy to see that EM follows from RT2

2 if one identifies the tournament with the
following 2-coloring of pairs of N: For x < y let

c({x, y}) = 0 iff x→ y,

c({x, y}) = 1 iff x← y.
(12)

On any homogeneous set of c the relation → is transitive. Hence RT2
2 yields an

infinite transitive subtournament.
In the other direction EM and ADS (the principle CAC restricted to linear

orderings) imply RT2
2. To see this let for some coloring c the relation → be defined

by (12). Using EM one finds an infinte subset on which→ is a linear ordering. The
principle ADS yields an infinite →-chain. By definition c is constant on this chain.

The principle EM was introduced by Bovykin and Weiermann in [3]. They also
proved the above stated equivalence.

We now give some lower bounds on the strength of EM:

Proposition 16.

RCA0 ` EM→Π0
1-CP

Proof. We show that EM proves the infinite pigeonhole principle. The result follows
from this by [12].

Let f : N→ n be coloring of N with n colors. We consider the following infinite
tournament. For x < y let

x→ y iff f(x) = f(y),

x← y iff f(x) 6= f(y).

Applying EM yields and an infinite set X on which → is transitive. We claim that
f restricted to X eventually becomes constant. Suppose not, then

∀k ∈ X ∃x ∈ X (k < x ∧ f(k) 6= f(x))

which is by definition of →

∀k ∈ X ∃x ∈ X (k < x ∧ k ← x)

Now applying Σ0
1-induction we obtain n+ 1 elements x1, . . . , xn+1 ∈ X with

x1 < x2 < · · · < xn+1 and x1 ← x2 ← · · · ← xn+1.

By transitivity and definition of→ we obtain that f(xi) are pairwise different. But
this contradicts the fact that f is bounded by n.

The infinite pigeonhole principle for f and hence the proposition follows from
this. �

Proposition 17. There exists a computable tournament 〈N,→〉 that has no low
infinite transitive subtournament, i.e. no set X such that → is transitive on X and
X ′ ≤T 0′.
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Proof. By [9] there exists a computable stable 2-coloring of pairs c, such that there
is no low homogeneous set. Let → be the corresponding tournament as described
by (12).

Suppose now that there is a low set X on which→ is transitive and hence a linear
ordering. Since c is stable this ordering is also stable. By Theorem 2.11 of [11] there
exists an infinite chain Y that is low relative to X and hence low. Since on this
chain the coloring c is homogeneous, this contradict the choice of c. �
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